Abstract
Various aspects of orbifolds and cosets of the small š© = 4 superconformal algebra are studied. First, we determine minimal strong generators for generic and specific levels. As a corollary, we obtain the vertex algebra of global sections of the chiral de Rham complex on any complex Enriques surface. We also identify orbifolds of cosets of the small š© = 4 superconformal algebra with Com(Vā(š°š©2); Vā+1(š°š©2) ā š²ā5/2(š°š©4; frect)) and in addition at special levels with Grassmanian cosets and principal š²-algebras of type A at degenerate admissible levels. These coincidences lead us to a novel level-rank duality involving Grassmannian supercosets.
This is a preview of subscription content, access via your institution.
References
D. AdamoviÄ, V. G. Kac, P. Moseneder Frajria, P. Papi, O. PerÅ”e, Finite vs infinite decompositions in conformal embeddings, Comm. Math. Phys. 348 (2016), 445ā473.
T. Arakawa, T. Creutzig, K. Kawasetsu, A. R. Linshaw, Orbifolds and cosets of minimal š²-algebras, Comm. Math. Phys. 355 (2017), 339ā372.
T. Arakawa, T. Creutzig, A. R. Linshaw, Cosets of BershadskyāPolyakov algebras and rational W-algebras of type A, Sel. Math. New Ser. 23 (2017), 2369ā2395.
T. Arakawa, T. Creutzig, A. R. Linshaw, W-algebras as coset vertex algebras, Invent. Math. 218 (2019), no. 1, 145ā195.
D. AdamoviÄ, Representations of the N = 2 superconformal vertex algebra, Int. Math. Res. Not. 1999 (1999), no. 2, 61ā79.
D. AdamoviÄ, A realization of certain modules for the N = 4 superconformal algebra and the affine Lie algebra A2(1), Transform. Groups 21 (2016), no. 2, 299ā327.
M. Al-Ali, The ā¤2-orbifold of the universal affine vertex algebra, J. Pure Appl. Algebra 223 (2019), no. 12, 5430ā5443.
M. Al-Ali, A. R. Linshaw, The ā¤2-orbifold of the š²3-algebra, Comm. Math. Phys. 353 (2017), no. 3, 1129ā1150.
L. A. Borisov, A. Libgober, Elliptic genera of toric varieties and applications to mirror symmetry, Invent. Math. 140 (2000), no. 2, 453ā485.
F. Bonetti, C. Meneghelli, L. Rastelli, VOAs labelled by complex reflection groups and 4d SCFTs, JHEP 05 (2019), 155.
R. E. Borcherds, Vertex algebras, KacāMoody algebras, and the monster, Proc. Nat. Acad. Sci. 83 (1986), 3068ā3071.
L. A. Borisov, Vertex algebras and mirror symmetry, Comm. Math. Phys. 215 (2001), 517ā557.
B. H. Lian, G. J. Zuckerman, Commutative quantum operator algebras, J. Pure Appl. Algebra 100 (1995), no. 1, 117ā139.
T. Creutzig, B. Feigin, A. R. Linshaw, N = 4 superconformal algebras and diagonal cosets, Int. Math. Res. Not. 2020 (2020), doi.org/10.1093/imrn/rnaa078.
T. Creutzig, D. Gaiotto, Vertex algebras for S-duality, Comm. Math. Phys. 379 (2020), no. 3, 785ā845.
T. Creutzig, D. Gaiotto, A. R. Linshaw, S-duality for the large N = 4 superconformal algebra, Comm. Math. Phys. 374 (2020), no. 3, 1787ā1808.
T. Creutzig, G. Hƶhn, Mathieu moonshine and the geometry of K3 surfaces, Comm. Num. Theor. Phys. 08 (2014), 295ā328.
T. Creutzig, Y. Hikida, Rectangular W-algebras and superalgebras and their representations, Phys. Rev. D 100 (2019) no. 8, 086008.
T. Creutzig, S. Kanade, A. R. Linshaw, Simple current extensions beyond semi-simplicity, Comm. Contemp. Math. 22 (2020), no. 1, 1950001, 49 pp.
T. Creutzig, S. Kanade, A. R. Linshaw, D. Ridout, SchurāWeyl duality for Heisenberg cosets, Transform. Groups 24 (2019), no. 2, 301ā354.
T. Creutzig, A. R. Linshaw, Cosets of the Wk(š°š©4; fsubreg)-algebra, Contemp. Math. 711 (2018), 105ā117.
T. Creutzig, A. R. Linshaw, Cosets of affine vertex algebras inside larger structures, J. Algebra 517 (2019), 396ā438.
T. Creutzig, A. R. Linshaw, Trialities of W-algebras, arXiv:2005.10234 (2020).
T. Creutzig, W-algebras for ArgyresāDouglas theories, Europ. J. Math. 3 (2017), no. 3, 659ā690.
C. Dong, H. Li, G. Mason, Compact automorphism groups of vertex operator algebras, Int. Math. Res. Not. 1996 (1996), no. 18, 913ā921.
C. Dong, C. H. Lam, Q. Wang, H. Yamada, The structure of parafermion vertex operator algebras, J. Algebra 323 (2010), no. 2, 371ā381.
T. Eguchi, H. Ooguri, Y. Tachikawa, Notes on the K3 surface and the Mathieu group M24, Exper. Math. 20 (2011), 91ā96.
T. Eguchi, A. Taormina, On the unitary representations of N = 2 and N = 4 superconformal algebras, Phys. Lett. B210 (1988), 125ā132.
E. Frenkel, D. Ben-Zvi, Vertex Algebras and Algebraic Curves, Mathematical Surveys and Monographs, Vol. 88, American Mathematical Society, Providence, RI, 2001.
E. Frenkel, M. Szczesny, Chiral de Rham complex and orbifolds, J. Algebraic Geom. 16 (2007), 599ā624.
B. L. Feigin, A. M. Semikhatov, I. Yu. Tipunin, Equivalence between chain categories of representations of affine (2) and N = 2 superconformal algebras, J. Math. Phys. 39 (1998), 3865ā3905.
R. Heluani, Supersymmetry of the chiral de Rham complex 2: Commuting sectors, Int. Math. Res. Not. 2009 (2009), no. 6, 953ā987.
V. Kac, Vertex Algebras for Beginners, University Lecture Series, Vol. 10, American Mathematical Society, Providence, RI, 1998.
A. Kapustin, Chiral de Rham complex and the half-twisted sigma-model, arXiv:hep-th/0504074 (2005).
V. Kac, A. Radul, Representation theory of the vertex algebra W1+ā, Transform. Groups 1 (1996), no. 1, 41ā70.
H. Li, Vertex algebras and vertex Poisson algebras, Comm. Contemp. Math. 06 (2004), no. 01, 61ā110.
A. R. Linshaw, Universal two-parameter š²ā-algebra and vertex algebras of type (2, 3, ..., N), Compos. Math. 157 (2021), no. 1, 12ā82.
B. H. Lian, A. R. Linshaw, Howe pairs in the theory of vertex Algebras, J. Algebra 317 (2007), 111ā152.
A. R. Linshaw, G. Schwarz, B. Song, Arc spaces and the vertex algebra commutant problem, Adv. Math. 277 (2015), 338ā364.
J. M. Maldacena, The Large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999), 1113ā1133.
F. Malikov, V. Schechtman, Chiral de Rham complex. II, Amer. Math. Soc. Transl. 194 (1999), 149ā188.
F. Malikov, V. Schechtman, Chiral PoincarĆ duality, Math. Res. Lett. 6 (1999), no. 5-6, 533ā546.
F. Malikov, V. Schechtman, Deformations of vertex algebras, quantum cohomology of toric varieties, and elliptic genus, Comm. Math. Phys. 234 (2003), no. 1, 77ā100.
F. Malikov, V. Schechtman, A. Vaintrob, Chiral de Rham complex, Comm. Math. Phys. 204 (1999), 439ā473.
V. Ostrik, M. Sun, Level-rank duality via tensor categories, Comm. Math. Phys. 326 (2014), no. 1, 49ā61.
B. Song, The global sections of the chiral de Rham complex on a Kummer surface, Int. Math. Res. Not. 2016 (2016), no. 14, 4271ā4296.
B. Song, Vector bundles induced from jet schemes, Trans. Amer. Math. Soc. 374 (2021), no. 4, 2661ā2685.
B. Song, The global sections of chiral de Rham complexes on compact Ricci-flat KƤhler manifolds, Comm. Math. Phys. 382 (2021), no. 1, 351ā379.
K. Thielemans, A MathematicaTM package for computing operator product expansions, Int. J. Modern Phys. C 02 (1991), 787.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisherās Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Thomas Creutzig is supported by NSERC Discovery Grant RES0048511.
Andrew R. Linshaw is supported by Simons Foundation Grant 635650 and NSF Grant DMS 2001484.
Rights and permissions
About this article
Cite this article
CREUTZIG, T., LINSHAW, A.R. & RIEDLER, W. INVARIANT SUBALGEBRAS OF THE SMALL š© = 4 SUPERCONFORMAL ALGEBRA. Transformation Groups 27, 797ā832 (2022). https://doi.org/10.1007/s00031-021-09652-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00031-021-09652-1