Skip to main content

INVARIANT SUBALGEBRAS OF THE SMALL 𝒩 = 4 SUPERCONFORMAL ALGEBRA

Abstract

Various aspects of orbifolds and cosets of the small 𝒩 = 4 superconformal algebra are studied. First, we determine minimal strong generators for generic and specific levels. As a corollary, we obtain the vertex algebra of global sections of the chiral de Rham complex on any complex Enriques surface. We also identify orbifolds of cosets of the small 𝒩 = 4 superconformal algebra with Com(V(𝔰𝔩2); Vℓ+1(𝔰𝔩2) ⊗ 𝒲–5/2(𝔰𝔩4; frect)) and in addition at special levels with Grassmanian cosets and principal 𝒲-algebras of type A at degenerate admissible levels. These coincidences lead us to a novel level-rank duality involving Grassmannian supercosets.

This is a preview of subscription content, access via your institution.

References

  1. D. Adamović, V. G. Kac, P. Moseneder Frajria, P. Papi, O. Perše, Finite vs infinite decompositions in conformal embeddings, Comm. Math. Phys. 348 (2016), 445–473.

    Article  MathSciNet  MATH  Google Scholar 

  2. T. Arakawa, T. Creutzig, K. Kawasetsu, A. R. Linshaw, Orbifolds and cosets of minimal 𝒲-algebras, Comm. Math. Phys. 355 (2017), 339–372.

    Article  MathSciNet  MATH  Google Scholar 

  3. T. Arakawa, T. Creutzig, A. R. Linshaw, Cosets of Bershadsky–Polyakov algebras and rational W-algebras of type A, Sel. Math. New Ser. 23 (2017), 2369–2395.

    Article  MathSciNet  MATH  Google Scholar 

  4. T. Arakawa, T. Creutzig, A. R. Linshaw, W-algebras as coset vertex algebras, Invent. Math. 218 (2019), no. 1, 145–195.

    Article  MathSciNet  MATH  Google Scholar 

  5. D. Adamović, Representations of the N = 2 superconformal vertex algebra, Int. Math. Res. Not. 1999 (1999), no. 2, 61–79.

    Article  MathSciNet  MATH  Google Scholar 

  6. D. Adamović, A realization of certain modules for the N = 4 superconformal algebra and the affine Lie algebra A2(1), Transform. Groups 21 (2016), no. 2, 299–327.

    Article  MathSciNet  MATH  Google Scholar 

  7. M. Al-Ali, The2-orbifold of the universal affine vertex algebra, J. Pure Appl. Algebra 223 (2019), no. 12, 5430–5443.

    Article  MathSciNet  MATH  Google Scholar 

  8. M. Al-Ali, A. R. Linshaw, The2-orbifold of the 𝒲3-algebra, Comm. Math. Phys. 353 (2017), no. 3, 1129–1150.

    Article  MathSciNet  MATH  Google Scholar 

  9. L. A. Borisov, A. Libgober, Elliptic genera of toric varieties and applications to mirror symmetry, Invent. Math. 140 (2000), no. 2, 453–485.

    Article  MathSciNet  MATH  Google Scholar 

  10. F. Bonetti, C. Meneghelli, L. Rastelli, VOAs labelled by complex reflection groups and 4d SCFTs, JHEP 05 (2019), 155.

    Article  MathSciNet  Google Scholar 

  11. R. E. Borcherds, Vertex algebras, Kac–Moody algebras, and the monster, Proc. Nat. Acad. Sci. 83 (1986), 3068–3071.

    Article  MathSciNet  MATH  Google Scholar 

  12. L. A. Borisov, Vertex algebras and mirror symmetry, Comm. Math. Phys. 215 (2001), 517–557.

    Article  MathSciNet  MATH  Google Scholar 

  13. B. H. Lian, G. J. Zuckerman, Commutative quantum operator algebras, J. Pure Appl. Algebra 100 (1995), no. 1, 117–139.

    Article  MathSciNet  MATH  Google Scholar 

  14. T. Creutzig, B. Feigin, A. R. Linshaw, N = 4 superconformal algebras and diagonal cosets, Int. Math. Res. Not. 2020 (2020), doi.org/10.1093/imrn/rnaa078.

  15. T. Creutzig, D. Gaiotto, Vertex algebras for S-duality, Comm. Math. Phys. 379 (2020), no. 3, 785–845.

    Article  MathSciNet  MATH  Google Scholar 

  16. T. Creutzig, D. Gaiotto, A. R. Linshaw, S-duality for the large N = 4 superconformal algebra, Comm. Math. Phys. 374 (2020), no. 3, 1787–1808.

    Article  MathSciNet  MATH  Google Scholar 

  17. T. Creutzig, G. Höhn, Mathieu moonshine and the geometry of K3 surfaces, Comm. Num. Theor. Phys. 08 (2014), 295–328.

    Article  MathSciNet  MATH  Google Scholar 

  18. T. Creutzig, Y. Hikida, Rectangular W-algebras and superalgebras and their representations, Phys. Rev. D 100 (2019) no. 8, 086008.

  19. T. Creutzig, S. Kanade, A. R. Linshaw, Simple current extensions beyond semi-simplicity, Comm. Contemp. Math. 22 (2020), no. 1, 1950001, 49 pp.

  20. T. Creutzig, S. Kanade, A. R. Linshaw, D. Ridout, Schur–Weyl duality for Heisenberg cosets, Transform. Groups 24 (2019), no. 2, 301–354.

    Article  MathSciNet  MATH  Google Scholar 

  21. T. Creutzig, A. R. Linshaw, Cosets of the Wk(𝔰𝔩4; fsubreg)-algebra, Contemp. Math. 711 (2018), 105–117.

    Article  MATH  Google Scholar 

  22. T. Creutzig, A. R. Linshaw, Cosets of affine vertex algebras inside larger structures, J. Algebra 517 (2019), 396–438.

    Article  MathSciNet  MATH  Google Scholar 

  23. T. Creutzig, A. R. Linshaw, Trialities of W-algebras, arXiv:2005.10234 (2020).

  24. T. Creutzig, W-algebras for Argyres–Douglas theories, Europ. J. Math. 3 (2017), no. 3, 659–690.

    Article  MathSciNet  MATH  Google Scholar 

  25. C. Dong, H. Li, G. Mason, Compact automorphism groups of vertex operator algebras, Int. Math. Res. Not. 1996 (1996), no. 18, 913–921.

    Article  MathSciNet  MATH  Google Scholar 

  26. C. Dong, C. H. Lam, Q. Wang, H. Yamada, The structure of parafermion vertex operator algebras, J. Algebra 323 (2010), no. 2, 371–381.

    Article  MathSciNet  MATH  Google Scholar 

  27. T. Eguchi, H. Ooguri, Y. Tachikawa, Notes on the K3 surface and the Mathieu group M24, Exper. Math. 20 (2011), 91–96.

    Article  MATH  Google Scholar 

  28. T. Eguchi, A. Taormina, On the unitary representations of N = 2 and N = 4 superconformal algebras, Phys. Lett. B210 (1988), 125–132.

    Article  MathSciNet  Google Scholar 

  29. E. Frenkel, D. Ben-Zvi, Vertex Algebras and Algebraic Curves, Mathematical Surveys and Monographs, Vol. 88, American Mathematical Society, Providence, RI, 2001.

  30. E. Frenkel, M. Szczesny, Chiral de Rham complex and orbifolds, J. Algebraic Geom. 16 (2007), 599–624.

    Article  MathSciNet  MATH  Google Scholar 

  31. B. L. Feigin, A. M. Semikhatov, I. Yu. Tipunin, Equivalence between chain categories of representations of affine (2) and N = 2 superconformal algebras, J. Math. Phys. 39 (1998), 3865–3905.

    Article  MathSciNet  MATH  Google Scholar 

  32. R. Heluani, Supersymmetry of the chiral de Rham complex 2: Commuting sectors, Int. Math. Res. Not. 2009 (2009), no. 6, 953–987.

    Article  MathSciNet  MATH  Google Scholar 

  33. V. Kac, Vertex Algebras for Beginners, University Lecture Series, Vol. 10, American Mathematical Society, Providence, RI, 1998.

    MATH  Google Scholar 

  34. A. Kapustin, Chiral de Rham complex and the half-twisted sigma-model, arXiv:hep-th/0504074 (2005).

  35. V. Kac, A. Radul, Representation theory of the vertex algebra W1+∞, Transform. Groups 1 (1996), no. 1, 41–70.

    Article  MathSciNet  MATH  Google Scholar 

  36. H. Li, Vertex algebras and vertex Poisson algebras, Comm. Contemp. Math. 06 (2004), no. 01, 61–110.

    Article  MathSciNet  MATH  Google Scholar 

  37. A. R. Linshaw, Universal two-parameter 𝒲-algebra and vertex algebras of type (2, 3, ..., N), Compos. Math. 157 (2021), no. 1, 12–82.

    Article  MathSciNet  MATH  Google Scholar 

  38. B. H. Lian, A. R. Linshaw, Howe pairs in the theory of vertex Algebras, J. Algebra 317 (2007), 111–152.

    Article  MathSciNet  MATH  Google Scholar 

  39. A. R. Linshaw, G. Schwarz, B. Song, Arc spaces and the vertex algebra commutant problem, Adv. Math. 277 (2015), 338–364.

    Article  MathSciNet  MATH  Google Scholar 

  40. J. M. Maldacena, The Large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999), 1113–1133.

    Article  MathSciNet  MATH  Google Scholar 

  41. F. Malikov, V. Schechtman, Chiral de Rham complex. II, Amer. Math. Soc. Transl. 194 (1999), 149–188.

    MathSciNet  MATH  Google Scholar 

  42. F. Malikov, V. Schechtman, Chiral Poincarà duality, Math. Res. Lett. 6 (1999), no. 5-6, 533–546.

    Article  MathSciNet  MATH  Google Scholar 

  43. F. Malikov, V. Schechtman, Deformations of vertex algebras, quantum cohomology of toric varieties, and elliptic genus, Comm. Math. Phys. 234 (2003), no. 1, 77–100.

    Article  MathSciNet  MATH  Google Scholar 

  44. F. Malikov, V. Schechtman, A. Vaintrob, Chiral de Rham complex, Comm. Math. Phys. 204 (1999), 439–473.

    Article  MathSciNet  MATH  Google Scholar 

  45. V. Ostrik, M. Sun, Level-rank duality via tensor categories, Comm. Math. Phys. 326 (2014), no. 1, 49–61.

    Article  MathSciNet  MATH  Google Scholar 

  46. B. Song, The global sections of the chiral de Rham complex on a Kummer surface, Int. Math. Res. Not. 2016 (2016), no. 14, 4271–4296.

    Article  MathSciNet  MATH  Google Scholar 

  47. B. Song, Vector bundles induced from jet schemes, Trans. Amer. Math. Soc. 374 (2021), no. 4, 2661–2685.

    Article  MathSciNet  MATH  Google Scholar 

  48. B. Song, The global sections of chiral de Rham complexes on compact Ricci-flat Kähler manifolds, Comm. Math. Phys. 382 (2021), no. 1, 351–379.

    Article  MathSciNet  MATH  Google Scholar 

  49. K. Thielemans, A MathematicaTM package for computing operator product expansions, Int. J. Modern Phys. C 02 (1991), 787.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to THOMAS CREUTZIG.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Thomas Creutzig is supported by NSERC Discovery Grant RES0048511.

Andrew R. Linshaw is supported by Simons Foundation Grant 635650 and NSF Grant DMS 2001484.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

CREUTZIG, T., LINSHAW, A.R. & RIEDLER, W. INVARIANT SUBALGEBRAS OF THE SMALL 𝒩 = 4 SUPERCONFORMAL ALGEBRA. Transformation Groups 27, 797–832 (2022). https://doi.org/10.1007/s00031-021-09652-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00031-021-09652-1