Skip to main content
Log in

CRYSTAL STRUCTURES FOR SYMMETRIC GROTHENDIECK POLYNOMIALS

  • Published:
Transformation Groups Aims and scope Submit manuscript

Abstract

The symmetric Grothendieck polynomials representing Schubert classes in the Ktheory of Grassmannians are generating functions for semistandard set-valued tableaux. We construct a type An crystal structure on these tableaux. This crystal yields a new combinatorial formula for decomposing symmetric Grothendieck polynomials into Schur polynomials. For single-columns and single-rows, we give a new combinatorial interpretation of Lascoux polynomials (K-analogs of Demazure characters) by constructing a K-theoretic analog of crystals with an appropriate analog of a Demazure crystal. We relate our crystal structure to combinatorial models using excited Young diagrams, Gelfand–Tsetlin patterns via the 5-vertex model, and biwords via Hecke insertion to compute symmetric Grothendieck polynomials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Assaf, A combinatorial realization of Schur–Weyl duality via crystal graphs and dual equivalence graphs, in: 20th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2008), Discrete Math. Theor. Comput. Sci. Proc. AS (2008), pp. 141–152.

  2. S. Assaf, A. Schilling, A Demazure crystal construction for Schubert polynomials, Algebr. Combinatorics 1, no. 2, 225–247, 2018.

    Article  MathSciNet  MATH  Google Scholar 

  3. S. Assaf, D. Searles, Kohnert tableaux and a lifting of quasi-Schur functions, J. Combin. Theory Ser. A 156 (2018), 85–118.

    Article  MathSciNet  MATH  Google Scholar 

  4. G. Benkart, F. Sottile, J. Stroomer, Tableau switching: algorithms and applications, J. Combin. Theory Ser. A 76 (1996), no. 1, 11–43.

    Article  MathSciNet  MATH  Google Scholar 

  5. A. Björner, F. Brenti, Combinatorics of Coxeter Groups, Graduate Texts in Mathematics, Vol. 231, Springer, New York, 2005.

    MATH  Google Scholar 

  6. J. Bloom, O. Pechenik, D. Saracino, Proofs and generalizations of a homomesy conjecture of Propp and Roby, Discrete Math. 339 (2016), no. 1, 194–206.

    Article  MathSciNet  MATH  Google Scholar 

  7. P. Bressler, S. Evens, The Schubert calculus, braid relations, and generalized cohomology, Trans. Amer. Math. Soc. 317 (1990), no. 2, 799–811.

    Article  MathSciNet  MATH  Google Scholar 

  8. B. Brubaker, D. Bump, G. Chinta, S. Friedberg, P. E. Gunnells, Metaplectic ice, in: Multiple Dirichlet Series, L-functions and Automorphic Forms, Progr. Math., Vol. 300, Birkhäuser/Springer, New York, 2012, pp. 65–92.

  9. B. Brubaker, D. Bump, S. Friedberg, Schur polynomials and the Yang–Baxter equation, Comm. Math. Phys. 308 (2011), no. 2, 281–301.

    Article  MathSciNet  MATH  Google Scholar 

  10. A. S. Buch, A Littlewood-Richardson rule for the K-theory of Grassmannians, Acta Math. 189 (2002), no. 1, 37–78.

    Article  MathSciNet  MATH  Google Scholar 

  11. A. S. Buch, A. Kresch, M. Shimozono, H. Tamvakis, A. Yong, Stable Grothendieck polynomials and K-theoretic factor sequences, Math. Ann. 340 (2008), no. 2, 359–382.

    Article  MathSciNet  MATH  Google Scholar 

  12. A. S. Buch, M. J. Samuel, K-theory of minuscule varieties, J. Reine Angew. Math. 719 (2016), 133–171.

    MathSciNet  MATH  Google Scholar 

  13. D. Bump, A. Schilling, Crystal Bases: Representations and Combinatorics, World Scientific Publishing Co., Hackensack, NJ, 2017.

    Book  MATH  Google Scholar 

  14. M. Chmutov, M. Glick, P. Pylyavskyy, The Berenstein–Kirillov group and cactus groups, J. Comb. Algebra 4 (2020), no. 2, 111–140.

    Article  MathSciNet  MATH  Google Scholar 

  15. M. W. Davis, The Geometry and Topology of Coxeter Groups, London Mathematical Society Monographs Series, Vol. 32, Princeton University Press, Princeton, NJ, 2008.

    Google Scholar 

  16. M. Demazure, Une nouvelle formule des caractères, Bull. Sci. Math. 98 (1974), no. 3, 163–172.

    MathSciNet  MATH  Google Scholar 

  17. P. Edelman, C. Greene, Balanced tableaux, Adv. in Math. 63 (1987), no. 1, 42–99.

    Article  MathSciNet  MATH  Google Scholar 

  18. S. Fomin, C. Greene, Noncommutative Schur functions and their applications, Discrete Math. 193 (1998), no. 1–3, 179–200.

    Article  MathSciNet  MATH  Google Scholar 

  19. S. Fomin, A. N. Kirillov, Grothendieck polynomials and the Yang–Baxter equation, in: Formal Power Series and Algebraic Combinatorics/Séries Formelles et Combinatoire Algébrique, DIMACS, Piscataway, NJ, 1994, pp. 183–189.

    Google Scholar 

  20. W. Fulton, Young Tableaux: With Applications to Representation Theory and Geometry, London Mathematical Society Student Texts, Vol. 35, Cambridge University Press, Cambridge, 1997.

    Google Scholar 

  21. C. Gaetz, M. Mastrianni, R. Patrias, H. Peck, C. Robichaux, D. Schwein, K. Y. Tam, K-Knuth equivalence for increasing tableaux, Electron. J. Combin. 23 (2016), no. 1, Paper 1.40.

  22. P. Galashin, A Littlewood–Richardson rule for dual stable Grothendieck polynomials, J. Combin. Theory Ser. A 151 (2017), 23–35.

    Article  MathSciNet  MATH  Google Scholar 

  23. M. Gillespie, Variations on a theme of Schubert calculus, in: Recent Trends in Algebraic Combinatorics, Assoc. Women Math. Ser., Vol. 16, Springer, Cham, 2019, pp. 115–158.

  24. V. Gorbounov, C. Korff, Quantum integrability and generalised quantum Schubert calculus, Adv. Math. 313 (2017), 282–356.

    Article  MathSciNet  MATH  Google Scholar 

  25. W. Graham, V. Kreiman, Excited Young diagrams, equivariant K-theory, and Schubert varieties, Trans. Amer. Math. Soc. 367 (2015), no. 9, 6597–6645.

    Article  MathSciNet  MATH  Google Scholar 

  26. M. D. Haiman, Dual equivalence with applications, including a conjecture of Proctor, Discrete Math. 99 (1992), no. 1–3, 79–113.

    Article  MathSciNet  MATH  Google Scholar 

  27. T. Hudson, A Thom-Porteous formula for connective K-theory using algebraic cobordism, J. K-Theory 14 (2014), no. 2, 343–369.

    Article  MathSciNet  MATH  Google Scholar 

  28. J. E. Humphreys, Reection Groups and Coxeter Groups, Cambridge Studies in Advanced Mathematics, Vol. 29, Cambridge University Press, Cambridge, 1990.

    Book  Google Scholar 

  29. T. Ikeda, S. Iwao, T. Maeno, Peterson isomorphism in K-theory and relativistic Toda lattice, Int. Math. Res. Not. (to appear, 2018).

  30. T. Ikeda, H. Naruse, Excited Young diagrams and equivariant Schubert calculus, Trans. Amer. Math. Soc. 361 (2009), no. 10, 5193–5221.

    Article  MathSciNet  MATH  Google Scholar 

  31. T. Ikeda, H. Naruse, K-theoretic analogues of factorial Schur P- and Q-functions, Adv. Math. 243 (2013), 22–66.

    Article  MathSciNet  MATH  Google Scholar 

  32. T. Ikeda, T. Shimazaki, A proof of K-theoretic Littlewood–Richardson rules by Bender–Knuth-type involutions, Math. Res. Lett. 21 (2014), no. 2, 333–339.

    Article  MathSciNet  MATH  Google Scholar 

  33. R. Kaliszewski, J. Morse, Colorful combinatorics and Macdonald polynomials, European J. Combin. 81 (2019), 354–377.

    Article  MathSciNet  MATH  Google Scholar 

  34. R. Kane, Reection Groups and Invariant Theory, CMS Books in Mathematics/Ouvrages de Mathematiques de la SMC, Vol. 5, Springer-Verlag, New York, 2001.

    Google Scholar 

  35. M. Kashiwara, Crystalizing the q-analogue of universal enveloping algebras, Comm. Math. Phys. 133 (1990), no. 2, 249–260.

    Article  MathSciNet  MATH  Google Scholar 

  36. M. Kashiwara, On crystal bases of the q-analogue of universal enveloping algebras, Duke Math. J. 63 (1991), no. 2, 465–516.

    Article  MathSciNet  MATH  Google Scholar 

  37. M. Kashiwara, The crystal base and Littelmann's refined Demazure character formula, Duke Math. J. 71 (1993), no. 3, 839–858.

    Article  MathSciNet  MATH  Google Scholar 

  38. A. N. Kirillov, Notes on Schubert, Grothendieck and key polynomials, SIGMA Symmetry Integrability Geom. Methods Appl. 12 (2016), Paper no. 034.

  39. S. L. Kleiman, D. Laksov, Schubert calculus, Amer. Math. Monthly 79 (1972), 1061–1082.

    Article  MathSciNet  MATH  Google Scholar 

  40. A. Knutson, E. Miller, A. Yong, Gröbner geometry of vertex decompositions and of agged tableaux, J. Reine Angew. Math. 630 (2009), 1–31.

    Article  MathSciNet  MATH  Google Scholar 

  41. A. Knutson, A. Yong, A formula for K-theory truncation Schubert calculus, Int. Math. Res. Not. 2004, no. 70, 3741–3756.

  42. A. Kohnert, Weintrauben, Polynome, Tableaux, Dissertation, Universität Bayreuth, Bayreuth, 1990, Bayreuth. Math. Schr. (1991), no. 38, 1–97.

  43. V. Kreiman, Schubert classes in the equivariant K-theory and equivariant cohomology of the Grassmannian, arXiv:0512204 (2005).

  44. T. Lam, Affine Stanley symmetric functions, Amer. J. Math. 128 (2006), no. 6, 1553–1586.

    Article  MathSciNet  MATH  Google Scholar 

  45. T. Lam, P. Pylyavskyy, Combinatorial Hopf algebras and K-homology of Grassmannians, Int. Math. Res. Not. IMRN, 2007, no. 24, Art. ID rnm125.

  46. T. Lam, A. Schilling, M. Shimozono, K-theory Schubert calculus of the affine Grassmannian, Compos. Math. 146 (2010), no. 4, 811–852.

    Article  MathSciNet  MATH  Google Scholar 

  47. A. Lascoux, Transition on Grothendieck polynomials, in: Physics and Combinatorics, 2000 (Nagoya), World Sci. Publ., River Edge, NJ, 2001, pp. 164–179.

  48. A. Lascoux, B. Leclerc, J.-Y. Thibon, The plactic monoid, in: Algebraic Combinatorics on Words, edited by M. Lothaire, Cambridge University Press, Cambridge, 2002.

  49. A. Lascoux, M.-P. Schützenberger, Structure de Hopf de l’anneau de cohomologie et de l'anneau de Grothendieck d’une variété de drapeaux, C. R. Acad. Sci. Paris Sér. I Math. 295 (1982), no. 11, 629–633.

    MathSciNet  MATH  Google Scholar 

  50. A. Lascoux, M.-P. Schützenberger, Symmetry and ag manifolds, in: Invariant Theory (Montecatini, 1982), Lecture Notes in Math., Vol. 996, Springer, Berlin, 1983, pp. 118–144.

  51. A. Lascoux, M.-P. Schützenberger, Keys & standard bases, in: Invariant Theory and Tableaux (Minneapolis, MN, 1988), IMA Vol. Math. Appl., Vol. 19, Springer, New York, 1990, pp. 125–144.

  52. C. Lenart, Combinatorial aspects of the K-theory of Grassmannians, Ann. Comb. 4 (2000), no. 1, 67–82.

    Article  MathSciNet  MATH  Google Scholar 

  53. C. Lenart, On the combinatorics of crystal graphs. I. Lusztig’s involution, Adv. Math. 211 (2007), no. 1, 204–243.

    Article  MathSciNet  MATH  Google Scholar 

  54. H. Li, J. Morse, P. Shields, Structure constants for K-theory of Grassmannians, revisited, J. Combin. Theory Ser. A 144 (2016), 306–325.

    Article  MathSciNet  MATH  Google Scholar 

  55. P. Littelmann, Crystal graphs and Young tableaux, J. Algebra 175 (1995), no. 1,65–87.

    Article  MathSciNet  MATH  Google Scholar 

  56. J. Lorca Espiro, L. Volk, Crystals from 5-vertex ice models, J. Lie Theory 28 (2018), no. 4, 1119–1136.

    MathSciNet  MATH  Google Scholar 

  57. S. Mason, An explicit construction of type A Demazure atoms, J. Algebraic Combin. 29 (2009), no. 3, 295–313.

    Article  MathSciNet  MATH  Google Scholar 

  58. H. Matsumoto, Générateurs et relations des groupes de Weyl généralisés, C. R. Acad. Sci. Paris 258 (1964), 3419–3422.

    MathSciNet  MATH  Google Scholar 

  59. C. Monical, Set-valued skyline fillings, arXiv:1611.08777 (2016).

  60. C. Monical, O. Pechenik, T. Scrimshaw, SAGEMATH code, https://drive.google.com/file/d/1g-cLR3ZatHy5Rc4S9ImuW44CQj1COKTc/view?usp=sharing(2018).

  61. C. Monical, O. Pechenik, D. Searles, Polynomials from combinatorial K-theory, Canad. J. Math. (to appear, 2019), doi:10.4153/S0008414X19000464.

  62. J. Morse, J. Pan, W. Poh, A. Schilling, A crystal on decreasing factorizations in the 0-Hecke monoid, Electron. J. Combin. 27 (2020), no. 2, Research Paper 29.

  63. J. Morse, A. Schilling, Crystal approach to affine Schubert calculus, Int. Math. Res. Not. IMRN 2016, no. 8, 2239–2294.

  64. K. Motegi, K. Sakai, Vertex models, TASEP and Grothendieck polynomials, J. Phys. A 46 (2013), no. 35, 355201.

  65. K. Motegi, K. Sakai, K-theoretic boson-fermion correspondence and melting crystals, J. Phys. A 47 (2014), no. 44, 445202.

  66. R. Patrias, P. Pylyavskyy, Combinatorics of K-theory via a K-theoretic Poirier- Reutenauer bialgebra, Discrete Math. 339 (2016), no. 3, 1095–1115.

    Article  MathSciNet  MATH  Google Scholar 

  67. O. Pechenik, K-Theoretic Schubert Calculus and Applications, Thesis (Ph.D.)–University of Illinois at Urbana-Champaign, ProQuest LLC, Ann Arbor, MI, 2016.

  68. O. Pechenik, T. Scrimshaw, K-theoretic crystals for set-valued tableaux of rectangular shape, arXiv:1904.09674 (2019).

  69. O. Pechenik, D. Searles, Decompositions of Grothendieck polynomials, Int. Math. Res. Not. IMRN 2019, no. 10, 3214–3241.

  70. O. Pechenik, A. Yong, Equivariant K-theory of Grassmannians, Forum Math. Pi 5 (2017), no. e3.

  71. O. Pechenik, A. Yong, Genomic tableaux, J. Algebraic Combin. 45 (2017), no. 3, 649–685.

    Article  MathSciNet  MATH  Google Scholar 

  72. P. Pylyavskyy, J. Yang, Puzzles in K-homology of Grassmannians, Pacific J. Math. 303 (2019), no. 2, 703–727.

    Article  MathSciNet  MATH  Google Scholar 

  73. V. Reiner, M. Shimozono, Key polynomials and a flagged Littlewood–Richardson rule, J. Combin. Theory Ser. A 70 (1995), no. 1, 107–143.

    Article  MathSciNet  MATH  Google Scholar 

  74. V. Reiner, B. E. Tenner, A. Yong, Poset edge densities, nearly reduced words, and barely set-valued tableaux, J. Combin. Theory Ser. A 158 (2018), 66–125.

    Article  MathSciNet  MATH  Google Scholar 

  75. C. Ross, A. Yong, Combinatorial rules for three bases of polynomials, Sém. Lothar. Combin. 74 (2015), Art. B74a.

  76. The Sage-Combinat community, Sage-Combinat: enhancing Sage as a toolbox for computer exploration in algebraic combinatorics, http://combinat.sagemath.org (2008).

  77. The Sage Developers, Sage Mathematics Software (Version 8:2), http://www.sagemath.org (2018).

  78. H. Schubert, Kalkül der abzählenden Geometrie, reprint of the 1879 original, with an introduction by S. L. Kleiman, Springer-Verlag, Berlin, 1979.

  79. M. P. Schützenberger, Promotion des morphismes d'ensembles ordonnés, Discrete Math. 2 (1972), 73–94.

    Article  MathSciNet  MATH  Google Scholar 

  80. M. Shimozono, Affine type A crystal structure on tensor products of rectangles, Demazure characters, and nilpotent varieties, J. Algebraic Combin. 15 (2002), no. 2, 151–187.

    Article  MathSciNet  MATH  Google Scholar 

  81. R. P. Stanley, On the number of reduced decompositions of elements of Coxeter groups, European J. Combin. 5 (1984), no. 4, 359–372.

    Article  MathSciNet  MATH  Google Scholar 

  82. R. P. Stanley, Enumerative Combinatorics Vol. 2, Cambridge Studies in Advanced Mathematics, Vol. 62, Cambridge University Press, Cambridge, 1999.

  83. R. P. Stanley, Promotion and evacuation, Electron. J. Combin. 16 (2009), no. 2, Research Paper 9.

  84. J. R. Stembridge, A local characterization of simply-laced crystals, Trans. Amer. Math. Soc. 355 (2003), no. 12, 4807–4823.

    Article  MathSciNet  MATH  Google Scholar 

  85. H. Thomas, A. Yong, A jeu de taquin theory for increasing tableaux, with applications to Ktheoretic Schubert calculus, Algebra Number Theory 3 (2009), 121–148.

    Article  MathSciNet  MATH  Google Scholar 

  86. H. Thomas, A. Yong, Longest increasing subsequences, Plancherel-type measure and the Hecke insertion algorithm, Adv. in Appl. Math. 46 (2011), no. 1-4, 610–642.

    Article  MathSciNet  MATH  Google Scholar 

  87. H. Thomas, A. Yong, Equivariant Schubert calculus and jeu de taquin, Ann. Inst. Fourier (Grenoble) 68 (2018), no. 1, 275–318.

    Article  MathSciNet  MATH  Google Scholar 

  88. R. Vakil, A geometric Littlewood–Richardson rule, appendix A written with A. Knutson, Ann. of Math. (2) 164 (2006), no. 2, 371–421.

  89. M. A. A. van Leeuwen, The Littlewood–Richardson rule, and related combinatorics, in: Interaction of Combinatorics and Representation Theory, MSJ Mem., Vol. 11, Math. Soc. Japan, Tokyo, 2001, pp. 95–145.

  90. M. Wheeler, P. Zinn-Justin, Littlewood–Richardson coeficients for Grothendieck polynomials from integrability, J. Reine Angew. Math. 757 (2019), 159–195.

    Article  MathSciNet  MATH  Google Scholar 

  91. D. Yeliussizov, Symmetric Grothendieck polynomials, skew Cauchy identities, and dual filtered Young graphs, J. Combin. Theory Ser. A 161 (2019), 453–485.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to OLIVER PECHENIK.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

MONICAL, C., PECHENIK, O. & SCRIMSHAW, T. CRYSTAL STRUCTURES FOR SYMMETRIC GROTHENDIECK POLYNOMIALS. Transformation Groups 26, 1025–1075 (2021). https://doi.org/10.1007/s00031-020-09623-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00031-020-09623-y

Navigation