Skip to main content
Log in

QUANTUM TORIC DEGENERATION OF QUANTUM FLAG AND SCHUBERT VARIETIES

  • Published:
Transformation Groups Aims and scope Submit manuscript

Abstract

We show that certain homological regularity properties of graded connected algebras, such as being AS-Gorenstein or AS-Cohen–Macaulay, can be tested by passing to associated graded rings. In the spirit of noncommutative algebraic geometry, this can be seen as an analogue of the classical result that, in a flat family of varieties over the affine line, regularity properties of the exceptional fiber extend to all fibers. We then show that quantized coordinate rings of flag varieties and Schubert varieties can be filtered so that the associated graded rings are twisted semigroup rings in the sense of [RZ12]. This is a noncommutative version of the result due to Caldero [C02] stating that flag and Schubert varieties degenerate into toric varieties, and implies that quantized coordinate rings of flag and Schubert varieties are AS-Cohen–Macaulay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. M. Artin, J. J. Zhang, Noncommutative projective schemes, Adv. Math. 109 (1994), no. 2, 228–287.

    Article  MathSciNet  Google Scholar 

  2. A. Berenstein, A. Zelevinsky, Tensor product multiplicities, canonical bases and totally positive varieties, Invent. Math. 143 (2001), no. 1, 77–128.

    Article  MathSciNet  Google Scholar 

  3. A. Björner, F. Brenti, Combinatorics of Coxeter Groups, Graduate Texts in Mathematics, Vol. 231, Springer, New York, 2005.

  4. M. P. Brodmann, R. Y. Sharp, Local Cohomology: an Algebraic Introduction with Geometric Applications, Cambridge Studies in Advanced Mathematics, Vol. 60, Cambridge University Press, Cambridge, 1998.

  5. W. Bruns, J. Herzog, Cohen–Macaulay Rings, Cambridge Studies in Advanced Mathematics, Vol. 39, Cambridge University Press, 1993.

  6. W. Bruns, J. Gubeladze, Polytopes, Rings, and K-theory, Springer Monographs in Mathematics, Springer, Dordrecht, 2009.

  7. P. Caldero, Toric degenerations of Schubert varieties, Transform. Groups 7 (2002), no. 1, 51–60.

    Article  MathSciNet  Google Scholar 

  8. C. De Concini, D. Eisenbud, C. Procesi, Hodge Algebras, Astérisque 91, Société Mathématique de France, Paris, 1982.

  9. X. Fang, G. Fourier, P. Littelmann, On toric degenerations of flag varieties, in: Representation Theory—Current Trends and Perspectives, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2017, pp. 187–232.

  10. X. Fang, G. Fourier, P. Littelmann, Essential bases and toric degenerations arising from birational sequences, Adv. Math. 312 (2017), 107–149.

    Article  MathSciNet  Google Scholar 

  11. J. C. Rosales, P. A. García-Sánchez, Finitely Generated Commutative Monoids, Nova Science Publishers, Inc., Commack, NY, 1999.

    MATH  Google Scholar 

  12. N. Gonciulea, V. Lakshmibai, Degenerations of flag and Schubert varieties to toric varieties, Transform. Groups 1 (1996), no. 3, 215–248.

    Article  MathSciNet  Google Scholar 

  13. T. Hibi, Distributive lattices, affine semigroup rings and algebras with straightening laws, in: Commutative Algebra and Combinatorics, Kyoto, 1985, Adv. Stud. Pure Math., Vol. 11, North-Holland, Amsterdam, 1987, pp. 93–109.

  14. W. V. D. Hodge, Some enumerative results in the theory of forms, Proc. Cam. Phil. Soc. 39 (1943), 22–30.

    Article  MathSciNet  Google Scholar 

  15. J. C. Jantzen, Lectures on Quantum Groups, Graduate Studies in Mathematics, Vol. 6, American Mathematical Society, Providence, RI, 1996.

  16. P. Jørgensen, J. J. Zhang, Gourmet’s guide to Gorensteinness, Adv. Math. 151 (2000), no. 2, 313–345.

    Article  MathSciNet  Google Scholar 

  17. M. Kashiwara, The crystal base and Littelmann’s refined Demazure character formula, Duke Math. J. 71 (1993), no. 3, 839–858.

    Article  MathSciNet  Google Scholar 

  18. M. Kashiwara, On crystal bases, in: Representations of Groups, Banff, AB, 1994, CMS Conf. Proc., Vol. 16, Amer. Math. Soc., Providence, RI, 1995, pp. 155–197

  19. V. Lakshmibai, N, Reshetikhin, Quantum flag and Schubert schemes, in: Deformation Theory and Quantum Groups with Applications to Mathematical Physics (Amherst, MA, 1990), Contemp. Math. 134, Amer. Math. Soc., Providence, RI, 1992, pp. 145–181.

  20. T. H. Lenagan, L. Rigal, Quantum graded algebras with a straightening law and the AS-Cohen–Macaulay property for quantum determinantal rings and quantum Grassmannians, J. Algebra 301 (2006), no. 2, 670–702.

    Article  MathSciNet  Google Scholar 

  21. P. Littelmann, Cones, crystals, and patterns, Transform. Groups 3 (1998), no. 2, 145–179.

    Article  MathSciNet  Google Scholar 

  22. G. Lusztig, Introduction to Quantum Groups, Modern Birkhäuser Classics, Birkhäuser/Springer, New York, 2010.

  23. G. Maury, J. Raynaud, Ordres Maximaux au Sens de K. Asano, Lecture Notes in Mathematics, Vol. 808, Springer, Berlin, 1980.

  24. J. C. McConnell, J. C., Robson, Noncommutative Noetherian Rings, Graduate Studies in Mathematics, Vol. 30, American Mathematical Society, Providence, RI. 2001.

  25. C. Năstăsescu, F. Van Oystaeyen, Graded and Filtered Rings and Modules, Lecture Notes in Mathematics, Vol. 758, Springer, Berlin, 1979.

  26. C. Năstăsescu, F. Van Oystaeyen, Methods of Graded Rings, Lecture Notes in Mathematics, Vol. 1836, Springer-Verlag, Berlin, 2004.

  27. L. Rigal, P. Zadunaisky, Quantum analogues of Richardson varieties in the grassmannian and their toric degeneration. J. Algebra 372 (2012), 293–317.

    Article  MathSciNet  Google Scholar 

  28. L. Rigal, P. Zadunaisky, Twisted semigroup algebras, Alg. Rep. Theory 18 (2015), no. 5, 1155–1186.

    Article  MathSciNet  Google Scholar 

  29. Я. С. Сойбельман, О квантовом многообразии флагов, Функц. анализ и его прил. 26 (1992), вып. 3, 90–92. Engl. transl.: Ya. S. Soĭbelman, On the quantum flag manifold, Funct. Anal. Appl. 26 (1992), no. 3, 225–227.

  30. B. Sturmfels, Gröbner Bases and Convex Polytopes, University Lecture Series, Vol. 8, American Mathematical Society, Providence, RI, 1996.

  31. C. A. Weibel, An Introduction to Homological Algebra, Cambridge Studies in Advanced Mathematics, Vol. 38, Cambridge University Press, Cambridge, 1994.

  32. A. Woo, A. Yong, When is a Schubert variety Gorenstein? Adv. Math 207 (2006), no. 1, 205–220.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. ZADUNAISKY.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

P. Zadunaisky is supported by a CONICET Postdoctoral fellowship

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

RIGAL, L., ZADUNAISKY, P. QUANTUM TORIC DEGENERATION OF QUANTUM FLAG AND SCHUBERT VARIETIES. Transformation Groups 26, 1113–1143 (2021). https://doi.org/10.1007/s00031-020-09615-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00031-020-09615-y

Navigation