Skip to main content



We construct a minimal Lefschetz decomposition of the bounded derived category of coherent sheaves on the isotropic Grassmannian IGr(3, 7). Moreover, we show that IGr(3, 7) admits a full exceptional collection consisting of equivariant vector bundles.

This is a preview of subscription content, access via your institution.


  1. А. А. Бейлинсон, Когерентные пучки на Pn и проблемы линейной алгебры, Функц. анализ и его прил. 12 (1978), вып. 3, 68–69. Engl. transl.: A. A. Beilinson, Coherent sheaves on Pn and problems of linear algebra, Funct. Analysis Appl. 12 (1978), no. 3, 214–216.

  2. А. И. Бондал, Представления ассоциативных алгебр и когерентные пучков, Изв. АН СССР. Сер. матем. 53 (1989), вып. 1, 25–44. Engl. transl.: A. I. Bondal, Representations of associative algebras and coherent sheaves, Math. USSR-Izvestiya 34 (1990), no. 1, 23–42.

  3. А. И. Бондал, М. М. Капранов, Представимые функторы, функторы Серра и перестройки, Изв АН СССР. Сер. матем. 53 (1989), вып. 6, 1183–1205. A. I. Bondal, M. M. Kapranov, Representable functors, Serre functors, and mutations, Math. USSR-Izvestiya 35 (1990), no. 3, 519–541.

  4. А. В. Фонарёв, О гипотезе Кузнецова–Полищука, Тр. МИАН 290 (2015), 18–33. A. V. Fonarev, On the Kuznetsov–Polishchuk conjecture, Proc. Steklov Inst. Math. 290 (2015), no. 1, 11–25.

  5. R. Gonzales, C. Pech, N. Perrin, A. Samokhin, Geometry of horospherical varieties of Picard rank one, arXiv:1803.05063 (2018).

  6. S. Gorchinskiy, Integral chow motives of threefolds with K-motives of unit type, Bull. Korean Math. Soc. 54 (2017), no. 5, 1827–1849.

    MathSciNet  MATH  Google Scholar 

  7. M. M. Kapranov, On the derived categories of coherent sheaves on some homogeneous spaces, Invent. math. 92 (1988), no. 3, 479–508.

    Article  MathSciNet  Google Scholar 

  8. O. Küchle, On Fano 4-folds of index 1 and homogeneous vector bundles over Grassmannians, Math. Z. 218 (1995), no. 1, 563–575.

    Article  MathSciNet  Google Scholar 

  9. A. Kuznetsov, Exceptional collections for grassmannians of isotropic lines, Proc. London Math. Soc. 97 (2008), no. 1, 155–182.

    Article  MathSciNet  Google Scholar 

  10. A. Kuznetsov, Lefschetz decompositions and categorical resolutions of singularities, Selecta Math. 13 (2008), no. 4, 661.

    Article  MathSciNet  Google Scholar 

  11. A. Kuznetsov, Küchle fivefolds of type c5, Math. Z. 284 (2016), no. 3-4, 1245–1278.

    Article  MathSciNet  Google Scholar 

  12. A. Kuznetsov, A. Polishchuk, Exceptional collections on isotropic Grassmannians, J. Europ. Math. Soc. 18 (2016), no. 3, 507–574.

    Article  MathSciNet  Google Scholar 

  13. А. Г. Кузнецов, О многообразиях Кюхле с числом Пикара большим 1, Изв. РАН. Сер. матем. 79 (2015), вып. 4, 57–70. Engl. transl.: A. G. Kuznetsov, On Küchle varieties with Picard number greater than 1, Izvestiya: Math. 79 (2015), no. 4, 689–709.

  14. I. A. Mihai, Odd symplectic flag manifolds, Transform. Groups 12 (2007), no. 3, 573–599.

    Article  MathSciNet  Google Scholar 

  15. S. Okawa, Semi-orthogonal decomposability of the derived category of a curve, Adv. Math. 228 (2011), no. 5, 2869–2873.

    Article  MathSciNet  Google Scholar 

  16. D. Orlov, Smooth and proper noncommutative schemes and gluing of DG categories, Adv. Math. 302 (2016), 59–105.

    Article  MathSciNet  Google Scholar 

  17. Д. О. Орлов, Проективные расслоения, моноидальные преобразования и производные категории когерентных пучков, Изв. РАН. Сер. матем. 56 (1992), вып. 4, 852–862. Engl. transl.: D. O. Orlov, Projective bundles, monoidal transformations, and derived categories of coherent sheaves, Russian Academy of Sciences. Izvestiya Math. 41 (1993), no. 1, 133–141.

  18. Д. О. Орлов, Геометрические реализации колчанных алгебр, Тр. МИАН 290 (2015), 80–94. Engl. transl. D. O. Orlov, Geometric realizations of quiver algebras, Proc. Steklov Inst. Math. 290 (2015), no. 1, 70–83.

  19. Д. О. Орлов, Склейка категорий и партнеры Крулля – Шмидта, УМН 71 (2016), вып. 3(429), 203–204. Engl. transl.: D. O. Orlov, Gluing of categories and Krull–Schmidt partners, Russian Math. Surveys 71 (2016), no. 3, 594–596.

  20. B. Pasquier, On some smooth projective two-orbit varieties with Picard number 1, Math. Ann. 344 (2019), no. 4, 963–987.

    Article  MathSciNet  Google Scholar 

  21. C. Pech, Quantum cohomology of the odd symplectic Grassmannian of lines, J. Algebra 375 (2013), 188–215.

    Article  MathSciNet  Google Scholar 

  22. А. В. Самохин, Производная категория когерентных пучков на LG3C, УМН 56 (2001), вып. 3(339), 177–178. Engl. transl.: A. V. Samokhin, The derived category of coherent sheaves on LG3C, Russian Math. Surveys 56 (2001), no. 3, 592–594.

  23. J. Weyman, Cohomology of Vector Bundles and Syzygies, Cambridge Tracts in Mathematics, Vol. 149, Cambridge University Press, Cambridge, 2003.

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to A. FONAREV.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The author is partially supported by Laboratory of Mirror Symmetry NRU HSE, RF Government grant, ag. No 14.641.31.0001. The author is a “Young Russian Mathematics” award winner and a Simons-IUM fellow and would like to thank its sponsors and jury.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

FONAREV, A. ON THE BOUNDED DERIVED CATEGORY OF IGr(3, 7). Transformation Groups 27, 89–112 (2022).

Download citation

  • Published:

  • Issue Date:

  • DOI: