Skip to main content
SpringerLink
Account
Menu
Find a journal Publish with us
Search
Cart
  1. Home
  2. Transformation Groups
  3. Article

TOPOLOGICAL LOOPS HAVING SOLVABLE INDECOMPOSABLE LIE GROUPS AS THEIR MULTIPLICATION GROUPS

  • Open access
  • Published: 06 November 2020
  • volume 26, pages 279–303 (2021)
Download PDF

You have full access to this open access article

Transformation Groups Aims and scope Submit manuscript
TOPOLOGICAL LOOPS HAVING SOLVABLE INDECOMPOSABLE LIE GROUPS AS THEIR MULTIPLICATION GROUPS
Download PDF
  • Á. FIGULA1 &
  • A. AL-ABAYECHI2 
  • 286 Accesses

  • 1 Citation

  • Explore all metrics

Cite this article

Abstract

We prove that the solvability of the multiplication group Mult(L) of a connected simply connected topological loop L of dimension three forces that L is classically solvable. Moreover, L is congruence solvable if and only if either L has a non-discrete centre or L is an abelian extension of a normal subgroup ℝ by the 2-dimensional nonabelian Lie group or by an elementary filiform loop. We determine the structure of indecomposable solvable Lie groups which are multiplication groups of three-dimensional topological loops. We find that among the six-dimensional indecomposable solvable Lie groups having a four-dimensional nilradical there are two one-parameter families and a single Lie group which consist of the multiplication groups of the loops L. We prove that the corresponding loops are centrally nilpotent of class 2.

Article PDF

Download to read the full article text

Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. A. A. Albert, Quasigroups I, Trans. Amer. Math. Soc. 54 (1943), 507–519.

    Article  MathSciNet  Google Scholar 

  2. R. H. Bruck, Contributions to the theory of loops, Trans. Amer. Math. Soc. 60 (1946), 245–354.

    Article  MathSciNet  Google Scholar 

  3. R. H. Bruck, A Survey of Binary Systems, Springer-Verlag, Berlin, 1971.

    Book  Google Scholar 

  4. P. Csörgȍ, M. Niemenmaa, On connected transversals to nonabelian subgroups, Europ. J. Comb. 23 (2002), 179–185.

    Article  MathSciNet  Google Scholar 

  5. A. Drapal, Orbits of inner mapping groups, Monatsh. Math. 134 (2002), 191–206.

    Article  MathSciNet  Google Scholar 

  6. Á. Figula, The multiplication groups of 2-dimensional topological loops, J. Group Theory 12 (2009), 419–429.

    Article  MathSciNet  Google Scholar 

  7. Á. Figula, On the multiplication groups of three-dimensional topological loops, J. Lie Theory 21 (2011), 385–415.

    MathSciNet  MATH  Google Scholar 

  8. Á. Figula, Three-dimensional topological loops with solvable multiplication groups, Comm. in Algebra 42 (2014), 444–468.

    Article  MathSciNet  Google Scholar 

  9. Á. Figula, Quasi-simple Lie groups as multiplication groups of topological loops, Adv. in Geometry 15 (2015), 315–331.

    Article  MathSciNet  Google Scholar 

  10. Á. Figula, M. Lattuca, Three-dimensional topological loops with nilpotent multi- plication groups, J. Lie Theory 25 (2015), 787–805.

    MathSciNet  MATH  Google Scholar 

  11. R. Freese, R. McKenzie, Commutator Theory for Congruence Modular Varieties, London Mathematical Society Lecture Notes Series, Vol. 125, Cambridge University Press, Cambridge 1987.

    MATH  Google Scholar 

  12. A. González-López, N. Kamran, P. J. Olver, Lie algebras of vector fields in the real plane, Proc. London Math. Soc. 64 (1992), no. 2, 339–368.

    Article  MathSciNet  Google Scholar 

  13. K. H. Hofmann, K. Strambach, Topological and analytical loops, in: Quasigroups and Loops: Theory and Applications, O. Chein, H. O. Pugfelder, J. D. H. Smith eds., Heldermann-Verlag, Berlin, 1990, pp. 205–262.

  14. S. Lie, F. Engels, Theorie der Transformationsgruppen, Bd. 3. Verlag von B.G. Teubner, Leipzig, 1893.

  15. M. Mazur, Connected transversals to nilpotent groups, J. Group Theory 10 (2007), 195–203.

    MathSciNet  MATH  Google Scholar 

  16. C. Moore, D. Thérien, F. Lemieux, J. Berman, A. Drisko, Circuits and expressions with nonassociative gates, J. of Computer and System Sciences 60 (2000), 368–394.

    Article  MathSciNet  Google Scholar 

  17. Г. М. Мубаракзянов, Классификация разрешимых алгебр Ли шетого поряд-ка с одним ненилыnотентным базисным злементом, Изв. Вузов, Матем. 4 (1963), 104–116. [G. M. Mubarakzyanov, Classification of solvable Lie algebras in dimension six with one non-nilpotent basis element, Izv. Vyssh. Uchebn. Zaved. Mat. 4 (1963), 104–116 (in Russian)].

  18. G. P. Nagy, P. Vojtěchovský, Moufang loops with commuting inner mappings, J. Pure Appl. Algebra 213 (2009), 2177–2186.

    Article  MathSciNet  Google Scholar 

  19. P. T. Nagy, Nuclear properties of loop extensions, Results in Math. 74 (2019), Art. number: 100 (2019).

  20. P. T. Nagy, K. Strambach, Loops in Group Theory and Lie Theory, Walter de Gruyter, Vol. 35, Berlin, 2002.

  21. P. T. Nagy, K. Strambach, Schreier loops, Czech. Math. J. 58 (2008), 759–786.

    Article  MathSciNet  Google Scholar 

  22. M. Niemenmaa, T. Kepka, On multiplication groups of loops, J. Algebra 135 (1990), 112–122.

    Article  MathSciNet  Google Scholar 

  23. M. Niemenmaa, T. Kepka, On connected transversals to abelian subgroups, Bull. Austral. Math. Soc. 49 (1994), 121–128.

    Article  MathSciNet  Google Scholar 

  24. M. Rawashdeh, G. Thompson, The inverse problem for six-dimensional codimension two nilradical Lie algebras, J. Math. Phys. 47 (2006), 112901–112929.

    Article  MathSciNet  Google Scholar 

  25. A. Shabanskaya, G. Thompson, Six-dimensional Lie algebras with a five-dimensional nilradical, J. of Lie Theory 23 (2013), 313–355.

    MathSciNet  MATH  Google Scholar 

  26. D. Stanovský, P. Vojtěchovský, Commutator theory for loops, J. Algebra 399 (2014), 290–322.

    Article  MathSciNet  Google Scholar 

  27. D. Stanovský, P. Vojtěchovský, Abelian Extensions and Solvable Loops, Results. Math. 66 (2014), 367–384.

    Article  MathSciNet  Google Scholar 

  28. P. Turkowski, Solvable Lie algebras of dimension six, J. Math. Phys. 31 (1990), 1344–1350.

    Article  MathSciNet  Google Scholar 

  29. A. Vesanen, Solvable loops and groups, J. Algebra 180 (1996), 862–876.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Institute of Mathematics, University of Debrecen, P.O. Box 400, Debrecen, H-4002, Hungary

    Á. FIGULA

  2. Institute of Mathematics and Doctoral School of Mathematics and Computational Sciences, University of Debrecen, P.O. Box 400, Debrecen, H-4002, Hungary

    A. AL-ABAYECHI

Authors
  1. Á. FIGULA
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. A. AL-ABAYECHI
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Á. FIGULA.

Additional information

Funding Information

Open Access funding provided by University of Debrecen.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The paper is supported by the National Research, Development and Innovation Office (NKFIH) Grant No. K132951 and by the EFOP-3.6.1-16-2016-00022 project. The latter project is co-financed by the European Union and the European Social Fund.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

FIGULA, Á., AL-ABAYECHI, A. TOPOLOGICAL LOOPS HAVING SOLVABLE INDECOMPOSABLE LIE GROUPS AS THEIR MULTIPLICATION GROUPS. Transformation Groups 26, 279–303 (2021). https://doi.org/10.1007/s00031-020-09604-1

Download citation

  • Received: 11 September 2018

  • Accepted: 28 May 2020

  • Published: 06 November 2020

  • Issue Date: March 2021

  • DOI: https://doi.org/10.1007/s00031-020-09604-1

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Cancel contracts here

Not affiliated

Springer Nature

© 2023 Springer Nature