R. W. Carter, Centralizers of semisimple elements in the finite classical groups, Proc. London Math. Soc. 42 (1981), 1–41.
MathSciNet
Article
Google Scholar
R. W. Carter, Finite Groups of Lie type: Conjugacy Classes and Complex Characters, Wiley, New York, 1985.
MATH
Google Scholar
M. C. Clarke, A. Premet, The Hesselink stratification of nullcones and base change, Invent. Math. 191 (2013), 631–669.
MathSciNet
Article
Google Scholar
J. Dong, G. Yang, Geck’s conjecture and the generalized Gelfand–Graev representations in bad characteristic, arXiv:1910.03764 (2019).
A. W. M. Dress, W. Wenzel, A simple proof of an identity concerning Pfaffians of skew symmetric matrices, Advances in Math. 112 (1995), 120–134.
MathSciNet
Article
Google Scholar
O. Dudas, G. Malle, Modular irreducibility of cuspidal unipotent characters, Invent. Math. 211 (2018), 579–589.
MathSciNet
Article
Google Scholar
H. Enomoto, The characters of the finite symplectic group Sp(4, q), q = 2f, Osaka J. Math. 9 (1972), 75–94.
MathSciNet
MATH
Google Scholar
H. Enomoto, The characters of the finite Chevalley group G2(q), q = 3f, Japan. J. Math. 2 (1976), 191–248.
MathSciNet
Article
Google Scholar
H. Enomoto, H. Yamada, The characters of G2(2n), Japan. J. Math. 12 (1986), 325–377.
MathSciNet
Article
Google Scholar
The GAP Group, GAP–Groups, Algorithms, and Programming, Version 4.8.10, 2018 (see http://www.gap-system.org).
M. Geck, On the construction of semisimple Lie algebras and Chevalley groups, Proc. Amer. Math. Soc. 145 (2017), 3233–3247.
MathSciNet
Article
Google Scholar
M. Geck, D. Hézard, On the unipotent support of character sheaves, Osaka J. Math. 45 (2008), 819–831.
MathSciNet
MATH
Google Scholar
M. Geck, G. Hiss, Modular representations of finite groups of Lie type in non-defining characteristic, in: Finite Reductive Groups (Luminy, 1994; ed. M. Cabanes), Progress in Math., Vol. 141, Birkhäuser, Boston, MA, 1997, pp. 195–249.
M. Geck, G. Malle, On the existence of a unipotent support for the irreducible characters of finite groups of Lie type, Trans. Amer. Math. Soc. 352 (2000), 429–456.
MathSciNet
Article
Google Scholar
G.-M. Greuel, G. Pfister, A Singular introduction to commutative algebra, Springer–Verlag, Berlin, 2002 (see also http://www.singular.uni-kl.de).
N. Kawanaka, Generalized Gelfand–Graev representations and Ennola duality, in: Algebraic Groups and Related Topics, Advanced Studies in Pure Math., Vol. 6, Kinokuniya, Tokyo, and North-Holland, Amsterdam, 1985, pp. 175–206.
N. Kawanaka, Generalized Gelfand–Graev representations of exceptional algebraic groups I, Invent. Math. 84 (1986), 575–616.
MathSciNet
Article
Google Scholar
N. Kawanaka, Shintani lifting and Gelfand–Graev representations, in: The Arcata Conference on Representations of Finite Groups (Arcata, Calif., 1986), Proc. Sympos. Pure Math., Vol. 47, Part 1, Amer. Math. Soc., Providence, R.I., 1987, pp. 147–163.
D. E. Knuth, Overlapping pfaffians, Electron. J. Combin. 3 (1996), R5.
MathSciNet
Article
Google Scholar
F. Lübeck, Centralizers and numbers of semisimple classes in exceptional groups of Lie type, online data at http://www.math.rwth-aachen.de/~Frank.Luebeck/chev/CentSSClasses.
G. Lusztig, A class of irreducible representations of a Weyl group, Proc. Kon. Nederl. Akad. (A) 82 (1979), 323–335.
G. Lusztig, Characters of Reductive Groups Over a Finite Field, Ann. Math. Studies 107, Princeton U. Press, Princeton, New Jersey, 1984.
G. Lusztig, A unipotent support for irreducible representations, Advances in Math. 94 (1992), 139–179.
MathSciNet
Article
Google Scholar
G. Lusztig, Notes on unipotent classes, Asian J. Math. 1 (1997), 194–207.
MathSciNet
Article
Google Scholar
G. Lusztig, Unipotent elements in small characteristic, Transform. Groups 10 (2005), 449–487.
MathSciNet
Article
Google Scholar
G. Lusztig, Unipotent elements in small characteristic II, Transform. Groups 13 (2008), 773–797.
MathSciNet
Article
Google Scholar
G. Lusztig, Unipotent classes and special Weyl group representations, J. Algebra 321 (2009), 3418–3449.
MathSciNet
Article
Google Scholar
G. Lusztig, Unipotent elements in small characteristic III, J. Algebra 329 (2011), 163–189.
MathSciNet
Article
Google Scholar
G. Lusztig, Unipotent elements in small characteristic IV, Transform. Groups 15 (2010), 921–936.
MathSciNet
Article
Google Scholar
G. Lusztig, N. Spaltenstein, Induced unipotent classes, J. London Math. Soc. 19 (1979), 41–52.
MathSciNet
Article
Google Scholar
A. Premet, Nilpotent orbits in good characteristic and the Kempf–Rousseau theory (Special issue celebrating the 80th birthday of Robert Steinberg), J. Algebra 260 (2003), 338–366.
A. Premet, A modular analogue of Morozov’s theorem on maximal subalgebras of simple Lie algebras, Advances in Math. 311 (2017), 833–884.
MathSciNet
Article
Google Scholar
N. Spaltenstein, Classes unipotentes et sous-groupes de Borel, Lecture Notes in Math., Vol. 946, Springer, Berlin, 1982.
T. A. Springer, Linear Algebraic Groups, 2nd ed., Birkhäuser, Boston, 1998.
R. Steinberg, Lectures on Chevalley Groups, mimeographed notes, Department of Math., Yale University, 1967/68; now available as Vol. 66 of the University Lecture Series, Amer. Math. Soc., Providence, RI, 2016.
J. Taylor, Generalized Gelfand–Graev representations in small characteristics, Nagoya Math. J. 224 (2016), 93–167.
MathSciNet
Article
Google Scholar
T. Xue, Nilpotent elements in the dual of odd orthogonal algebras, Transform. Groups 17 (2012), 571–592.
MathSciNet
Article
Google Scholar