Skip to main content
Log in

A COMBINATORIAL FORMULA FOR GRADED MULTIPLICITIES IN EXCELLENT FILTRATIONS

  • Published:
Transformation Groups Aims and scope Submit manuscript

Abstract

A filtration of a representation whose successive quotients are isomorphic to Demazure modules is called an excellent filtration. In this paper we study graded multiplicities in excellent filtrations of fusion products for the current algebra \( {\mathfrak{sl}}_2\left[t\right] \). We give a combinatorial formula for the polynomials encoding these multiplicities in terms of two-dimensional lattice paths. Corollaries to our main theorem include a combinatorial interpretation of various objects such as the coefficients of Ramanujan’s fifth order mock theta functions ϕ0, ϕ1, ψ0, ψ1, Kostka–Foulkes polynomials for hook partitions and quotients of Chebyshev polynomials. Moreover, a combinatorial interpretation of the graded multiplicities in a level one flag of a local Weyl module associated to the simple Lie algebras of type Bn and G2 is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. K. Agarwal, n-color partition theoretic interpretations of some mock theta functions, Electron. J. Combin. 11 (2004), no. 1, Note 14, 6 pp.

  2. A. K. Agarwal, Lattice paths and mock theta functions, Proceedings of the 6th Int. Conf., SSFA 6 (2005), 95–102.

  3. G. E. Andrews, The Theory of Partitions, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1998.

  4. R. Biswal, V. Chari, D. Kus, Demazure flags, q-Fibonacci polynomials and hypergeometric series, Res. Math. Sci. 5 (2018), no. 1, Paper no. 12, 34 pp.

  5. R. Biswal, V. Chari, L. Schneider, S. Viswanath, Demazure flags, Chebyshev polynomials, partial and mock theta functions, J. Combin. Theory Ser. A 140 (2016), 38–75.

    Article  MathSciNet  Google Scholar 

  6. A. Braverman, M. Finkelberg, Weyl modules and q-Whittaker functions, Math. Ann. 359 (2014), 45–59.

    Article  MathSciNet  Google Scholar 

  7. M. Brito, V. Chari, A. Moura, Demazure modules of level two and prime representations of quantum affine \( {\mathfrak{sl}}_{n+1} \), J. Inst. Math. Jussieu 17 (2018), 75–105.

    Article  MathSciNet  Google Scholar 

  8. V. Chari, A. Pressley, Weyl modules for classical and quantum affine algebras, Represent. Theory 5 (2001), 191–223.

    Article  MathSciNet  Google Scholar 

  9. V. Chari, L. Schneider, P. Shereen, J. Wand, Modules with Demazure Flags and Character Formulae, SIGMA Symmetry Integrability Geom. Methods Appl. 10 (2014), Paper 032, 16 pp.

  10. V. Chari, R. Venkatesh, Demazure modules, fusion products and Q-systems, Comm. Math. Phys. 455 (2015), 799–830.

    Article  MathSciNet  Google Scholar 

  11. B. Feigin, S. Loktev, On generalized Kostka polynomials and the quantum Verlinde rule, in: Differential Topology, Infinite-dimensional Lie Algebras, and Applications, Amer. Math. Soc. Transl. Ser. 2, Vol. 194, Adv. Math. Sci., Vol. 44, Amer. Math. Soc., Providence, RI, 1999, pp. 61–79.

  12. N. J. Fine, Basic Hypergeometric Series and Applications, Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 1988.

  13. H. Garland, The arithmetic theory of loop algebras, J. Algebra 53 (1978), 480–551.

    Article  MathSciNet  Google Scholar 

  14. I. M. Gessel, G. Xin, A combinatorial interpretation of the numbers 6(2n)!/n!(n + 2)!, J. Integer Seq. 8 (2005), no. 2, Article 05.2.3, 13 pp.

  15. M. D. Haiman, Conjectures on the quotient ring by diagonal invariants, J. Algebraic Combin. 3 (1994), 17–76.

    Article  MathSciNet  Google Scholar 

  16. B. R. Handa, S. G. Mohanty, Enumeration of higher-dimensional paths under restrictions, Discrete Math. 26 (1979), 119–128.

    Article  MathSciNet  Google Scholar 

  17. B. Ion, Nonsymmetric Macdonald polynomials and Demazure characters, Duke Math. J. 116 (2003), 299–318.

    Article  MathSciNet  Google Scholar 

  18. D. Jakelić, A. Moura, Limits of multiplicities in excellent filtrations and tensor product decompositions for affine Kac–Moody algebras, Algebr. Represent. Theory 21 (2018), 239–258.

    Article  MathSciNet  Google Scholar 

  19. A. Joseph, A decomposition theorem for Demazure crystals, J. Algebra 265 (2003), 562–578.

    Article  MathSciNet  Google Scholar 

  20. A. Joseph, Modules with a Demazure flag, in: Studies in Lie Theory, Progr. Math., Vol. 243, Birkhäuser Boston, Boston, MA, 2006, pp. 131–169.

  21. R. Kedem, Fusion products, cohomology of GLN flag manifolds, and Kostka polynomials, Int. Math. Res. Not. 25 (2004), 1273–1298.

    Article  Google Scholar 

  22. C. Krattenthaler, S. G. Mohanty, On lattice path counting by major index and descents, European J. Combin. 14 (1993), 43–51.

    Article  MathSciNet  Google Scholar 

  23. C. Krattenthaler, Lattice path enumeration, in: Handbook of Enumerative Combinatorics, Discrete Math. Appl. (Boca Raton), CRC Press, Boca Raton, FL, 2015, pp. 589–678.

  24. D. Kus, P. Littelmann, Fusion products and toroidal algebras, Pacific J. Math. 278 (2015), 427–445.

    Article  MathSciNet  Google Scholar 

  25. D. Kus, R. Venkatesh, Twisted Demazure modules, fusion product decomposition and twisted Q-systems, Represent. Theory 20 (2016), 94–127.

    Article  MathSciNet  Google Scholar 

  26. I. G. Macdonald, Symmetric Functions and Hall Polynomials, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1995.

  27. P. A. MacMahon, Combinatory Analysis, Chelsea Publishing Co., New York, 1960.

    MATH  Google Scholar 

  28. K. Naoi, Weyl modules, Demazure modules and finite crystals for non-simply laced type, Adv. Math. 229 (2016), 875–934.

    Article  MathSciNet  Google Scholar 

  29. S. Ramanujan, The Lost Notebook and Other Unpublished Papers, Springer-Verlag, Berlin, Narosa Publishing House, New Delhi, 1988.

  30. R. P. Stanley, Enumerative Combinatorics, Vol. 2, Cambridge Studies in Advanced Mathematics, Vol. 62, Cambridge University Press, Cambridge, 1999.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to DENIZ KUS.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

BISWAL, R., KUS, D. A COMBINATORIAL FORMULA FOR GRADED MULTIPLICITIES IN EXCELLENT FILTRATIONS. Transformation Groups 26, 81–114 (2021). https://doi.org/10.1007/s00031-020-09574-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00031-020-09574-4

Navigation