Skip to main content
Log in

INERTIA GROUPS AND UNIQUENESS OF HOLOMORPHIC VERTEX OPERATOR ALGEBRAS

  • Published:
Transformation Groups Aims and scope Submit manuscript

Abstract

We continue our program on classiffication of holomorphic vertex operator algebras of central charge 24. In this article, we show that there exists a unique strongly regular holomorphic VOA of central charge 24, up to isomorphism, if its weight one Lie algebra has the type C4,10, D7,3A3,1G2,1, A5,6C2,3A1,2, A3,1C7,2, D5,4C3,2A\( {A}_{1,1}^2 \), or E6,4C2,1A2,1. As a consequence, we have verified that the isomorphism class of a strongly regular holomorphic vertex operator algebra of central charge 24 is determined by its weight one Lie algebra structure if the weight one subspace is nonzero.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Abe, G. Buhl, C. Dong, Rationality, regularity, and C2-cofiniteness, Trans. Amer. Math. Soc. 356 (2004), 3391–3402.

    Article  MathSciNet  Google Scholar 

  2. C. Ai, C. Dong, X. Jiao, L. Ren, The irreducible modules and fusion rules for the parafermion vertex operator algebras, Trans. Amer. Math. Soc. 370 (2018), 5963–5981.

    Article  MathSciNet  Google Scholar 

  3. T. Arakawa, T. Creutzig, K. Kawasetsu, A. R. Linshaw, Orbifolds and cosets of minimal \( \mathcal{W} \)-algebras, Comm. Math. Phys. 335 (2017), 339–372.

    Article  MathSciNet  Google Scholar 

  4. R. E. Borcherds, Vertex algebras, Kac–Moody algebras, and the Monster, Proc. Nat’l. Acad. Sci. U.S.A. 83 (1986), 3068–3071.

    Article  MathSciNet  Google Scholar 

  5. S. Carnahan, M. Miyamoto, Regularity of fixed point vertex operator sub-algebras, arXiv:1603.05645 (2016).

  6. L. Dolan, P. Goddard, P. Montague, Conformal field theories, representations and lattice constructions, Comm. Math. Phys. 179 (1996), 61–120.

    Article  MathSciNet  Google Scholar 

  7. C. Dong, X. Jiao, F. Xu, Quantum dimensions and quantum Galois theory, Trans. Amer. Math. Soc. 365 (2013), 6441–6469.

    Article  MathSciNet  Google Scholar 

  8. C. Dong, X. Jiao, F. Xu, Mirror extensions of vertex operator algebras, Comm. Math. Phys. 329 (2014), 263–294.

    Article  MathSciNet  Google Scholar 

  9. C. Dong, J. Lepowsky, Generalized Vertex Algebras and Relative Vertex Operators, Progress in Mathematics, Vol. 112, Birkhäuser Boston, Boston, MA, 1993.

  10. C. Dong, H. Li, G. Mason, Simple currents and extensions of vertex operator algebras, Comm. Math. Phys. 180 (1996), 671–707.

    Article  MathSciNet  Google Scholar 

  11. C. Dong, H. Li, G. Mason, Modular-invariance of trace functions in orbifold theory and generalized Moonshine, Comm. Math. Phys. 214 (2000), 1–56.

    Article  MathSciNet  Google Scholar 

  12. C. Dong, G. Mason, Holomorphic vertex operator algebras of small central charge, Pacific J. Math. 213 (2004), 253–266.

    Article  MathSciNet  Google Scholar 

  13. C. Dong, G. Mason, Rational vertex operator algebras and the effective central charge, Int. Math. Res. Not. (2004), 2989–3008.

  14. C. Dong, G. Mason, Integrability of C2-cofinite vertex operator algebras, Int. Math. Res. Not. (2006), Art. ID 80468, 15 pp.

  15. C. Dong, G. Mason, Y. Zhu, Discrete series of the Virasoro algebra and the Moonshine module, in: Algebraic Groups and Their Generalizations: Quantum and Infinite-dimensional Methods (University Park, PA, 1991), Proc. Sympos. Pure Math., Vol. 56, Part 2, Amer. Math. Soc., Providence, RI, 1994, pp. 295–316.

  16. C. Dong, K. Nagatomo, Automorphism groups and twisted modules for lattice vertex operator algebras, in: Recent Developments in Quantum Affine Algebras and Related Topics (Raleigh, NC, 1998), Contemp. Math. 248, Amer. Math. Soc., Providence, RI, 1999, pp. 117–133.

  17. C. Dong, L. Ren, F. Xu, On orbifold theory, Adv. Math. 321 (2017), 1–30.

  18. J. van Ekeren, S. Möller, N. Scheithauer, Construction and classification of holomorphic vertex operator algebras, J. Reine Angew. Math. 2020 (2020), no. 759, 61–99.

    Article  MathSciNet  Google Scholar 

  19. J. van Ekeren, S. Möller, N. Scheithauer, Dimension formulae in genus zero and uniqueness of vertex operator algebras, Internat. Math. Res. Notices 2020 (2020), no. 7, 2145–2204.

    Article  MathSciNet  Google Scholar 

  20. I. B. Frenkel, Y. Huang, J. Lepowsky, On Axiomatic Approaches to Vertex Operator Algebras and Modules, Mem. Amer. Math. Soc., Vol. 104, 1993, viii+64 pp.

  21. I. Frenkel, J. Lepowsky, A. Meurman, Vertex Operator Algebras and the Monster, Pure and Appl. Math., Vol.134, Academic Press, Boston, 1988.

  22. I. Frenkel, Y. Zhu, Vertex operator algebras associated to representations of affine and Virasoro algebras, Duke Math. J. 66 (1992), 123–168.

    Article  MathSciNet  Google Scholar 

  23. S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces, Pure and Applied Mathematics, Vol. 80, Academic Press, New York, 1978.

  24. Y. Huang, A. Kirillov, J. Lepowsky, Braided tensor categories and extensions of vertex operator algebras, Comm. Math. Phys. 337 (2015), 1143–1159.

    Article  MathSciNet  Google Scholar 

  25. J. E. Humphreys, Introduction to Lie Algebras and Representation Theory, Graduate Texts in Mathematics, Vol. 9, Springer-Verlag, New York, 1972.

  26. V. G. Kac, Infinite-dimensional Lie Algebras, 3rd edition, Cambridge University Press, Cambridge, 1990.

  27. Computer package Kac (Komputations with Algebras and Currents), written by A.N. Schellekens; available at https://www.nikhef.nl/~t58/Site/Kac.html.

  28. K. Kawasetsu, C.H. Lam, X. Lin, ℤ2-orbifold construction associated with (−1)-isometry and uniqueness of holomorphic vertex operator algebras of central charge 24, Proc. Amer. Math. Soc. 146 (2018), 1937–1950.

    Article  MathSciNet  Google Scholar 

  29. M. Krauel, M. Miyamoto, A modular invariance property of multivariable trace functions for regular vertex operator algebras, J. Algebra 444 (2015), 124–142.

    Article  MathSciNet  Google Scholar 

  30. C. H. Lam, Induced modules for orbifold vertex operator algebras, J. Math. Soc. Japan 53 (2001), 541–557.

    Article  MathSciNet  Google Scholar 

  31. C. H. Lam, On the constructions of holomorphic vertex operator algebras of central charge 24, Comm. Math. Phys. 305 (2011), 153–198.

    Article  MathSciNet  Google Scholar 

  32. C. H. Lam, X. Lin, A holomorphic vertex operator algebra of central charge 24 with weight one Lie algebra F4,6A2,2, to appear in J. Pure Appl. Algebra.

  33. C. H. Lam, H. Shimakura, Quadratic spaces and holomorphic framed vertex operator algebras of central charge 24, Proc. Lond. Math. Soc. 104 (2012), 540–576.

    Article  MathSciNet  Google Scholar 

  34. C. H. Lam, H. Shimakura, Classification of holomorphic framed vertex operator algebras of central charge 24, Amer. J. Math. 137 (2015), 111–137.

    Article  MathSciNet  Google Scholar 

  35. C. H. Lam, H. Shimakura, Orbifold construction of holomorphic vertex operator algebras associated to inner automorphisms, Comm. Math. Phys. 342 (2016), 803–841.

    Article  MathSciNet  Google Scholar 

  36. C. H. Lam, H. Shimakura, A holomorphic vertex operator algebra of central charge 24 whose weight one Lie algebra has type A6,7, Lett. Math. Phys. 106 (2016), 1575–1585.

    Article  MathSciNet  Google Scholar 

  37. C. H. Lam, H. Shimakura, Reverse orbifold construction and uniqueness of holomorphic vertex operator algebras, Trans. Amer. Math. Soc. 372 (2019), 7001–7024.

    Article  MathSciNet  Google Scholar 

  38. C. H. Lam, H. Shimakura, On orbifold constructions associated with the Leech lattice vertex operator algebra, Math. Proc. Cambridge Philos. Soc. 168 (2020), no. 2, 261–285

    Article  MathSciNet  Google Scholar 

  39. C. H. Lam, H. Yamauchi, On the structure of framed vertex operator algebras and their pointwise frame stabilizers, Comm. Math. Phys. 277 (2008), 237–285.

    Article  MathSciNet  Google Scholar 

  40. H. Li, Symmetric invariant bilinear forms on vertex operator algebras, J. Pure Appl. Algebra 96 (1994), 279–297.

    Article  MathSciNet  Google Scholar 

  41. H. Li, Local systems of twisted vertex operators, vertex operator superalgebras and twisted modules, in: Moonshine, the Monster, and Related Topics, Contemp. Math. 193, Amer. Math. Soc., Providence, RI, 1996, pp. 203–236.

  42. H. Li, Certain extensions of vertex operator algebras of affine type, Comm. Math. Phys. 217 (2001), 653–696.

    Article  MathSciNet  Google Scholar 

  43. X. Lin, Mirror extensions of rational vertex operator algebras, Trans. Amer. Math. Soc. 369 (2017) 3821–3840.

    Article  MathSciNet  Google Scholar 

  44. M. Miyamoto, A3-orbifold theory of lattice vertex operator algebra and3-orbifold constructions, in: Symmetries, Integrable Systems and Representations, Springer Proc. Math. Stat., Vol. 40, Springer, Heidelberg, 2013, pp. 319–344.

  45. M. Miyamoto, C2-cofiniteness of cyclic-orbifold models, Comm. Math. Phys. 335 (2015), 1279–1286.

    Article  MathSciNet  Google Scholar 

  46. M. Miyamoto, K. Tanabe, Uniform product of Ag,n(V) for an orbifold model V and G-twisted Zhu algebra, J. Algebra 274 (2004), 80–96.

  47. S. Möller, A Cyclic Orbifold Theory for Holomorphic Vertex Operator Algebras and Applications, Dissertation, Darmstadt, 2016, arXiv:1611.09843 (2016).

  48. P. S. Montague, Orbifold constructions and the classification of self-contra-gredient c = 24 conformal field theories, Nuclear Phys. B 428 (1994), 233–258.

    Article  MathSciNet  Google Scholar 

  49. V. Ostrik, M. Sun, Level-rank duality via tensor categories, Commun. Math. Phys. 326 (2014), 49–61.

    Article  MathSciNet  Google Scholar 

  50. S. Sakuma, H. Yamauchi, Vertex operator algebra with two Miyamoto involutions generating S3, J. Algebra 267 (2003), 272–297.

    Article  MathSciNet  Google Scholar 

  51. D. Sagaki, H. Shimakura, Application of a3-orbifold construction to the lattice vertex operator algebras associated to Niemeier lattices, Trans. Amer. Math. Soc. 368 (2016), 1621–1646.

    Article  MathSciNet  Google Scholar 

  52. A. N. Schellekens, Meromorphic c = 24 conformal field theories, Comm. Math. Phys. 153 (1993), 159–185.

    Article  MathSciNet  Google Scholar 

  53. H. Shimakura, The automorphism group of the vertex operator algebra \( {V}_L^{+} \) for an even lattice L without roots, J. Algebra 280 (2004), 29–57.

    Article  MathSciNet  Google Scholar 

  54. F. Xu, An application of mirror extensions, Comm. Math. Phys 290 (2009), 83–103.

    Article  MathSciNet  Google Scholar 

  55. H. Yamauchi, Module categories of simple current extensions of vertex operator algebras, J. Pure Appl. Algebra 189 (2004), 315–328.

    Article  MathSciNet  Google Scholar 

  56. Y. Zhu, Modular invariance of characters of vertex operator algebras, J. Amer. Math. Soc. 9 (1996), 237–302.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to CHING HUNG LAM.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

C. H. Lam was partially supported by a research grant AS-IA-107-M02 of Academia Sinica and MoST grant 104-2115-M-001-004-MY3 of Taiwan.

H. Shimakura was partially supported by JSPS KAKENHI Grant Numbers 26800001 and 17K05154.

C. H. Lam and H. Shimakura were partially supported by JSPS Program for Advancing Strategic International Networks to Accelerate the Circulation of Talented Researchers “Development of Concentrated Mathematical Center Linking to Wisdom of the Next Generation”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

LAM, C.H., SHIMAKURA, H. INERTIA GROUPS AND UNIQUENESS OF HOLOMORPHIC VERTEX OPERATOR ALGEBRAS. Transformation Groups 25, 1223–1268 (2020). https://doi.org/10.1007/s00031-020-09570-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00031-020-09570-8

Navigation