V. Kac, Lie superalgebras, Adv. Math. 26 (1977), no. 1, 8–96.
MATH
Google Scholar
D. Ridout, J. Snadden, S. Wood, An admissible level \( \hat{\mathfrak{osp}}\left(1\left|2\right.\right) \)-model: modular transformations and the Verlinde formula, Lett. Math. Phys. 108 (2018), no. 11, 2363–2423.
MathSciNet
MATH
Google Scholar
J.-B. Fan, M. Yu, Modules over affine Lie superalgebras, arXiv:hep-th/9304122 (1993).
I. P. Ennes, A. V. Ramallo, Fusion rules and singular vectors of the osp(1|2) current algebra, Nucl. Phys. B502 (1997), no. 3, 671–712.
MathSciNet
MATH
Google Scholar
V. Kac, W. Wang, Vertex operator superalgebras and their representations, in: Mathematical Aspects of Conformal and Topological Field Theories and Quantum Groups, Contemporary Mathematics, Vol. 175, American Mathematical Society, Providence, 1994, pp. 161–191.
T. Creutzig, J. Frohlich, S. Kanade, Representation theory of \( {L}_k\left(\mathfrak{osp}\left(1\left|2\right.\right)\right) \)from vertex tensor categories and Jacobi forms, Proc. Amer. Math. Soc. 146 (2018), no. 11, 4571–4589.
MathSciNet
MATH
Google Scholar
V. Kac, M. Wakimoto, Modular invariant representations of infinite-dimensional Lie algebras and superalgebras, Proc. Nat. Acad. Sci. USA 85 (1988), no. 14, 4956–4960.
MathSciNet
MATH
Google Scholar
K. Kawasetsu, D. Ridout, Relaxed highest-weight modules I: rank 1 cases, Comm. Math. Phys. 368 (2019), no. 2, 627–663.
MathSciNet
MATH
Google Scholar
D. Ridout, \( \hat{\mathfrak{sl}}{(2)}_{-1/2} \): A case study, Nucl. Phys. B814 (2009), no. 3, 485–521.
T. Creutzig, D. Ridout, Modular data and Verlinde formulae for fractional level WZW models I, Nucl. Phys. B865 (2012), no. 1, 83–114.
MathSciNet
MATH
Google Scholar
T. Creutzig, D. Ridout, Modular data and verlinde formulae for fractional level WZW models II, Nucl. Phys. B875 (2013), no. 2, 423–458.
MathSciNet
MATH
Google Scholar
S. Kanade, T. Liu, D. Ridout, Cosets, characters and fusion for the admissible level \( \mathfrak{osp}\left(1\left|2\right.\right) \)minimal models, Nucl. Phys. B938 (2019), no. , 22–55.
D. Adamović, Realizations of simple affine vertex algebras and their modules: the cases sl(2) and osp(1; 2), Comm. Math. Phys. 366 (2019), no. 3, 1025–1067.
MathSciNet
MATH
Google Scholar
B. Feigin, T. Nakanishi, H. Ooguri, The annihilating ideals of minimal models, Int. J. Mod. Phys. A7 (1992), no. 1, 217–238.
MathSciNet
MATH
Google Scholar
Y. Zhu, Modular invariance of characters of vertex operator algebras, J. Amer. Math. Soc. 9 (1996), no. 1, 237–302.
MathSciNet
MATH
Google Scholar
K. Iohara, Y. Koga, Enright functors for Kac–Moody superalgebra, Abh. Math. Semin. Univ. Hambg. 82 (2012), no. 2, 205–226.
MathSciNet
MATH
Google Scholar
Ф. Г. Маликов, Б. Л. Фейгин, Д. Б. Фукс, Особые векторы в модулях Верма над алгебрами Каца–Муди, Функц. анализ и его прил. 20 (1986), вып. 2, 25–37. Engl. transl.: F. G. Malikov, B. L. Feigin, D. B. Fuks, Singular vectors in Verma modules over Kac–Moody algebras, Funct. Anal. Appl. 20 (1986), no. 2, 103–113.
B. Feigin, D. Fuchs, Representations of the Virasoro algebra, in: Representation of Lie groups and Related Topics, Advanced Studies in Contemporary Mathematics, Vol. 7, Gordon and Breach, New York, 1990, pp. 465–554.
M. Wakimoto, Fock representations of the affine Lie algebra \( {A}_1^{(1)} \), Comm. Math. Phys. 104 (1986), no. 4, 605–609.
MathSciNet
MATH
Google Scholar
V. Dotsenko, V. Fateev, Conformal algebra and multipoint correlation functions in 2D statistical models, Nucl. Phys. B240 (1984), no. 3, 312–348.
Google Scholar
A. Tsuchiya, Y. Kanie, Fock space representations of the Virasoro algebra—inter-twining operators, Publ. Res. Inst. Math. Sci. 22 (1986), no. 2, 259–327.
MathSciNet
MATH
Google Scholar
M. Wakimoto, Y. Yamada, The Fock representations of the Virasoro algebra and the Hirota equations of the modified KP hierarchies, Hiroshima Math. J. 16 (1986), no. 2, 427–441.
MathSciNet
MATH
Google Scholar
K. Mimachi, Y. Yamada, Singular vectors of the Virasoro algebra in terms of Jack symmetric polynomials, Comm. Math. Phys. 174 (1995), no. 2, 447–455.
MathSciNet
MATH
Google Scholar
M. Kato,Y. Yamada, Missing link between Virasoro and \( \hat{sl(2)} \)Kac–Moody algebras, Progr. Theoret. Phys. Suppl. 110 (1992), no. 110, 291–302.
D. Ridout, S. Wood, Relaxed singular vectors, Jack symmetric functions and fractional level \( \hat{\mathfrak{sl}}(2) \)models, Nucl. Phys. B894 (2015), 621–664.
MathSciNet
MATH
Google Scholar
P. Desrosiers, L. Lapointe, P. Mathieu, Supersymmetric Calogero–Moser–Sutherland models and Jack superpolynomials, Nucl. Phys. B606 (2001), no. 3, 547–582.
MathSciNet
MATH
Google Scholar
S. Yanagida, Singular vectors of N = 1 super Virasoro algebra via Uglov symmetric functions, arXiv:1508.06036 (2015).
O. Blondeau-Fournier, P. Mathieu, D. Ridout, S. Wood, The super-Virasoro singular vectors and Jack superpolynomials relationship revisited, Nucl. Phys. B913 (2016), 34–63.
MATH
Google Scholar
H. Awata, Y. Matsuo, S. Odake, J. Shiraishi, Excited states of the Calogero–Sutherland model and singular vectors of the Wn algebra, Nucl. Phys. B449 (1995), no. 1–2 ,347–374.
MathSciNet
MATH
Google Scholar
D. Ridout, S. Siu, S. Wood, Singular vectors for the WN algebras, J. Math. Phys., 59 (2018), no. 3, 031701.
B. Feigin, M. Jimbo, T. Miwa, E. Mukhin, A differential ideal of symmetric polynomials spanned by Jack polynomials at β = − (r − 1)/(k + 1), Int. Math. Res. Not. 2002 (2002), no. 23, 1223–1237.
MathSciNet
MATH
Google Scholar
A. Tsuchiya, S. Wood, On the extended W-algebra of type \( {\mathfrak{sl}}_2 \)at positive rational level, Int. Math. Res. Not. 2015 (2015), no. 14, 5357–5435.
MATH
Google Scholar
D. Ridout, S. Wood, From Jack polynomials to minimal model spectra, J. Phys. A48 (2015), no. 4, 045201.
O. Blondeau-Fournier, P. Mathieu, D. Ridout, S. Wood, Superconformal minimal models and admissible Jack polynomials, Adv. Math. 314 (2017), 71–123.
MathSciNet
MATH
Google Scholar
S.-J. Chen, W. Wang, Dualities and Representations of Lie Superalgebras, Graduate Studies in Mathematics, Vol. 144, American Mathematical Society, Providence, 2012.
G. Pinczon, The enveloping algebra of the lie superalgebra osp(1|2), J. Algebra 132 (1990), no. 1, 219–242.
MathSciNet
MATH
Google Scholar
A. Leśniewski, A remark on the Casimir elements of Lie superalgebras and quantized Lie superalgebras, J. Math. Phys. 36 (1995), no. 3, 1457–1461.
MathSciNet
MATH
Google Scholar
R. Block, Classification of the irreducible representations of \( \mathfrak{sl}\left(2,\mathrm{\mathbb{C}}\right) \), Bull. Amer. Math. Soc. 1 (1972), no. 1, 247–250.
R. Block, The irreducible representations of the Weyl algebra A1, Lecture Notes in Mathematics 740 (1979), 69–79.
Google Scholar
V. Mazorchuk, Lectures on \( \mathfrak{sl}\left(2,\mathrm{\mathbb{C}}\right) \)-Modules, Imperial College Press, London, 2010.
Google Scholar
D. Ridout, S. Wood, Bosonic ghosts at c = 2 as a logarithmic CFT, Lett. Math. Phys. 105 (2015), no. 2, 279–307.
MathSciNet
MATH
Google Scholar
E. Frenkel, D. Ben-Zvi, Vertex Algebras and Algebraic Curves, Mathematical Surveys and Monographs, Vol. 88, American Mathematical Society, Providence, 2001.
M. Gorelik, V. Kac, On simplicity of vacuum modules, Adv. Math. 211 (2007), no. 2, 621–677.
MathSciNet
MATH
Google Scholar
C. Dong, H. Li, G. Mason, Twisted representations of vertex operator algebras, Math. Ann. 310 (1998), no. 3, 571–600.
MathSciNet
MATH
Google Scholar
I. Frenkel, Y. Zhu, Vertex operator algebras associated to representations of affine and Virasoro algebras, Duke. Math. J. 66 (1992), no. 1, 123–168.
MathSciNet
MATH
Google Scholar
K. Iohara, Y. Koga, Fusion algebras for N = 1 superconformal field theories through coinvariants I: \( \hat{\mathfrak{osp}}\left(1\left|2\right.\right) \)-symmetry, J. reine angew. Math. 531 (2001), 1–34.
MathSciNet
MATH
Google Scholar
V. Kac, Vertex Algebras for Beginners, 2nd edition, University Lecture Series, Vol. 10, American Mathematical Society, Providence, 1998.
C. Dong, J. Lepowsky, Generalized Vertex Algebras and Relative Vertex Operators, Progress in Mathematics, Vol. 112, Birkhäuser, Boston, 1993.
M. Bershadsky, H. Ooguri, Hidden OSp(N, 2) symmetries in superconformal field theories, Phys. Lett. B229 (1989), no. 4, 374–378.
MathSciNet
MATH
Google Scholar
M. Bershadsky, H. Ooguri, Hidden SL(n) symmetry in conformal field theories, Comm. Math. Phys. 126 (1989), no. 1, 49–83.
MathSciNet
MATH
Google Scholar
J. L. Petersen, J. Rasmussen, M. Yu, Conformal blocks for admissible representations in SL(2) current algebra, Nucl. Phys. B458 (1995), no. 1–2, 309–342.
MathSciNet
MATH
Google Scholar
I. Macdonald, Symmetric Functions and Hall Polynomials, 2nd edition, Oxford Mathematical Monographs, Clarendon Press, Oxford, 1995.