Skip to main content

ADMISSIBLE LEVEL \( \mathfrak{osp}\left(1\left|2\right.\right) \) MINIMAL MODELS AND THEIR RELAXED HIGHEST WEIGHT MODULES

Abstract

The minimal model \( \mathfrak{osp}\left(1|2\right) \) vertex operator superalgebras are the simple quotients of affine vertex operator superalgebras constructed from the affine Lie super algebra \( \hat{\mathfrak{osp}}\left(1\left|2\right.\right) \) at certain rational values of the level k. We classify all isomorphism classes of ℤ2-graded simple relaxed highest weight modules over the minimal model \( \mathfrak{osp}\left(1|2\right) \) vertex operator superalgebras in both the Neveu–Schwarz and Ramond sectors. To this end, we combine free field realisations, screening operators and the theory of symmetric functions in the Jack basis to compute explicit presentations for the Zhu algebras in both the Neveu–Schwarz and Ramond sectors. Two different free field realisations are used depending on the level. For k < −1, the free field realisation resembles the Wakimoto free field realisation of affine \( \mathfrak{sl}(2) \) and is originally due to Bershadsky and Ooguri. It involves 1 free boson (or rank 1 Heisenberg vertex algebra), one βγ bosonic ghost system and one bc fermionic ghost system. For k > −1, the argument presented here requires the bosonisation of the βγ system by embedding it into an indefinite rank 2 lattice vertex algebra.

References

  1. V. Kac, Lie superalgebras, Adv. Math. 26 (1977), no. 1, 8–96.

    MATH  Google Scholar 

  2. D. Ridout, J. Snadden, S. Wood, An admissible level \( \hat{\mathfrak{osp}}\left(1\left|2\right.\right) \)-model: modular transformations and the Verlinde formula, Lett. Math. Phys. 108 (2018), no. 11, 2363–2423.

    MathSciNet  MATH  Google Scholar 

  3. J.-B. Fan, M. Yu, Modules over affine Lie superalgebras, arXiv:hep-th/9304122 (1993).

  4. I. P. Ennes, A. V. Ramallo, Fusion rules and singular vectors of the osp(1|2) current algebra, Nucl. Phys. B502 (1997), no. 3, 671–712.

    MathSciNet  MATH  Google Scholar 

  5. V. Kac, W. Wang, Vertex operator superalgebras and their representations, in: Mathematical Aspects of Conformal and Topological Field Theories and Quantum Groups, Contemporary Mathematics, Vol. 175, American Mathematical Society, Providence, 1994, pp. 161–191.

  6. T. Creutzig, J. Frohlich, S. Kanade, Representation theory of \( {L}_k\left(\mathfrak{osp}\left(1\left|2\right.\right)\right) \)from vertex tensor categories and Jacobi forms, Proc. Amer. Math. Soc. 146 (2018), no. 11, 4571–4589.

    MathSciNet  MATH  Google Scholar 

  7. V. Kac, M. Wakimoto, Modular invariant representations of infinite-dimensional Lie algebras and superalgebras, Proc. Nat. Acad. Sci. USA 85 (1988), no. 14, 4956–4960.

    MathSciNet  MATH  Google Scholar 

  8. K. Kawasetsu, D. Ridout, Relaxed highest-weight modules I: rank 1 cases, Comm. Math. Phys. 368 (2019), no. 2, 627–663.

    MathSciNet  MATH  Google Scholar 

  9. D. Ridout, \( \hat{\mathfrak{sl}}{(2)}_{-1/2} \): A case study, Nucl. Phys. B814 (2009), no. 3, 485–521.

  10. T. Creutzig, D. Ridout, Modular data and Verlinde formulae for fractional level WZW models I, Nucl. Phys. B865 (2012), no. 1, 83–114.

    MathSciNet  MATH  Google Scholar 

  11. T. Creutzig, D. Ridout, Modular data and verlinde formulae for fractional level WZW models II, Nucl. Phys. B875 (2013), no. 2, 423–458.

    MathSciNet  MATH  Google Scholar 

  12. S. Kanade, T. Liu, D. Ridout, Cosets, characters and fusion for the admissible level \( \mathfrak{osp}\left(1\left|2\right.\right) \)minimal models, Nucl. Phys. B938 (2019), no. , 22–55.

  13. D. Adamović, Realizations of simple affine vertex algebras and their modules: the cases sl(2) and osp(1; 2), Comm. Math. Phys. 366 (2019), no. 3, 1025–1067.

    MathSciNet  MATH  Google Scholar 

  14. B. Feigin, T. Nakanishi, H. Ooguri, The annihilating ideals of minimal models, Int. J. Mod. Phys. A7 (1992), no. 1, 217–238.

    MathSciNet  MATH  Google Scholar 

  15. Y. Zhu, Modular invariance of characters of vertex operator algebras, J. Amer. Math. Soc. 9 (1996), no. 1, 237–302.

    MathSciNet  MATH  Google Scholar 

  16. K. Iohara, Y. Koga, Enright functors for Kac–Moody superalgebra, Abh. Math. Semin. Univ. Hambg. 82 (2012), no. 2, 205–226.

    MathSciNet  MATH  Google Scholar 

  17. Ф. Г. Маликов, Б. Л. Фейгин, Д. Б. Фукс, Особые векторы в модулях Верма над алгебрами Каца–Муди, Функц. анализ и его прил. 20 (1986), вып. 2, 25–37. Engl. transl.: F. G. Malikov, B. L. Feigin, D. B. Fuks, Singular vectors in Verma modules over Kac–Moody algebras, Funct. Anal. Appl. 20 (1986), no. 2, 103–113.

  18. B. Feigin, D. Fuchs, Representations of the Virasoro algebra, in: Representation of Lie groups and Related Topics, Advanced Studies in Contemporary Mathematics, Vol. 7, Gordon and Breach, New York, 1990, pp. 465–554.

  19. M. Wakimoto, Fock representations of the affine Lie algebra \( {A}_1^{(1)} \), Comm. Math. Phys. 104 (1986), no. 4, 605–609.

    MathSciNet  MATH  Google Scholar 

  20. V. Dotsenko, V. Fateev, Conformal algebra and multipoint correlation functions in 2D statistical models, Nucl. Phys. B240 (1984), no. 3, 312–348.

    Google Scholar 

  21. A. Tsuchiya, Y. Kanie, Fock space representations of the Virasoro algebra—inter-twining operators, Publ. Res. Inst. Math. Sci. 22 (1986), no. 2, 259–327.

    MathSciNet  MATH  Google Scholar 

  22. M. Wakimoto, Y. Yamada, The Fock representations of the Virasoro algebra and the Hirota equations of the modified KP hierarchies, Hiroshima Math. J. 16 (1986), no. 2, 427–441.

    MathSciNet  MATH  Google Scholar 

  23. K. Mimachi, Y. Yamada, Singular vectors of the Virasoro algebra in terms of Jack symmetric polynomials, Comm. Math. Phys. 174 (1995), no. 2, 447–455.

    MathSciNet  MATH  Google Scholar 

  24. M. Kato,Y. Yamada, Missing link between Virasoro and \( \hat{sl(2)} \)Kac–Moody algebras, Progr. Theoret. Phys. Suppl. 110 (1992), no. 110, 291–302.

  25. D. Ridout, S. Wood, Relaxed singular vectors, Jack symmetric functions and fractional level \( \hat{\mathfrak{sl}}(2) \)models, Nucl. Phys. B894 (2015), 621–664.

    MathSciNet  MATH  Google Scholar 

  26. P. Desrosiers, L. Lapointe, P. Mathieu, Supersymmetric Calogero–Moser–Sutherland models and Jack superpolynomials, Nucl. Phys. B606 (2001), no. 3, 547–582.

    MathSciNet  MATH  Google Scholar 

  27. S. Yanagida, Singular vectors of N = 1 super Virasoro algebra via Uglov symmetric functions, arXiv:1508.06036 (2015).

  28. O. Blondeau-Fournier, P. Mathieu, D. Ridout, S. Wood, The super-Virasoro singular vectors and Jack superpolynomials relationship revisited, Nucl. Phys. B913 (2016), 34–63.

    MATH  Google Scholar 

  29. H. Awata, Y. Matsuo, S. Odake, J. Shiraishi, Excited states of the Calogero–Sutherland model and singular vectors of the Wn algebra, Nucl. Phys. B449 (1995), no. 1–2 ,347–374.

    MathSciNet  MATH  Google Scholar 

  30. D. Ridout, S. Siu, S. Wood, Singular vectors for the WN algebras, J. Math. Phys., 59 (2018), no. 3, 031701.

  31. B. Feigin, M. Jimbo, T. Miwa, E. Mukhin, A differential ideal of symmetric polynomials spanned by Jack polynomials at β =  − (r − 1)/(k + 1), Int. Math. Res. Not. 2002 (2002), no. 23, 1223–1237.

    MathSciNet  MATH  Google Scholar 

  32. A. Tsuchiya, S. Wood, On the extended W-algebra of type \( {\mathfrak{sl}}_2 \)at positive rational level, Int. Math. Res. Not. 2015 (2015), no. 14, 5357–5435.

    MATH  Google Scholar 

  33. D. Ridout, S. Wood, From Jack polynomials to minimal model spectra, J. Phys. A48 (2015), no. 4, 045201.

  34. O. Blondeau-Fournier, P. Mathieu, D. Ridout, S. Wood, Superconformal minimal models and admissible Jack polynomials, Adv. Math. 314 (2017), 71–123.

    MathSciNet  MATH  Google Scholar 

  35. S.-J. Chen, W. Wang, Dualities and Representations of Lie Superalgebras, Graduate Studies in Mathematics, Vol. 144, American Mathematical Society, Providence, 2012.

  36. G. Pinczon, The enveloping algebra of the lie superalgebra osp(1|2), J. Algebra 132 (1990), no. 1, 219–242.

    MathSciNet  MATH  Google Scholar 

  37. A. Leśniewski, A remark on the Casimir elements of Lie superalgebras and quantized Lie superalgebras, J. Math. Phys. 36 (1995), no. 3, 1457–1461.

    MathSciNet  MATH  Google Scholar 

  38. R. Block, Classification of the irreducible representations of \( \mathfrak{sl}\left(2,\mathrm{\mathbb{C}}\right) \), Bull. Amer. Math. Soc. 1 (1972), no. 1, 247–250.

  39. R. Block, The irreducible representations of the Weyl algebra A1, Lecture Notes in Mathematics 740 (1979), 69–79.

    Google Scholar 

  40. V. Mazorchuk, Lectures on \( \mathfrak{sl}\left(2,\mathrm{\mathbb{C}}\right) \)-Modules, Imperial College Press, London, 2010.

    Google Scholar 

  41. D. Ridout, S. Wood, Bosonic ghosts at c = 2 as a logarithmic CFT, Lett. Math. Phys. 105 (2015), no. 2, 279–307.

    MathSciNet  MATH  Google Scholar 

  42. E. Frenkel, D. Ben-Zvi, Vertex Algebras and Algebraic Curves, Mathematical Surveys and Monographs, Vol. 88, American Mathematical Society, Providence, 2001.

  43. M. Gorelik, V. Kac, On simplicity of vacuum modules, Adv. Math. 211 (2007), no. 2, 621–677.

    MathSciNet  MATH  Google Scholar 

  44. C. Dong, H. Li, G. Mason, Twisted representations of vertex operator algebras, Math. Ann. 310 (1998), no. 3, 571–600.

    MathSciNet  MATH  Google Scholar 

  45. I. Frenkel, Y. Zhu, Vertex operator algebras associated to representations of affine and Virasoro algebras, Duke. Math. J. 66 (1992), no. 1, 123–168.

    MathSciNet  MATH  Google Scholar 

  46. K. Iohara, Y. Koga, Fusion algebras for N = 1 superconformal field theories through coinvariants I: \( \hat{\mathfrak{osp}}\left(1\left|2\right.\right) \)-symmetry, J. reine angew. Math. 531 (2001), 1–34.

    MathSciNet  MATH  Google Scholar 

  47. V. Kac, Vertex Algebras for Beginners, 2nd edition, University Lecture Series, Vol. 10, American Mathematical Society, Providence, 1998.

  48. C. Dong, J. Lepowsky, Generalized Vertex Algebras and Relative Vertex Operators, Progress in Mathematics, Vol. 112, Birkhäuser, Boston, 1993.

  49. M. Bershadsky, H. Ooguri, Hidden OSp(N, 2) symmetries in superconformal field theories, Phys. Lett. B229 (1989), no. 4, 374–378.

    MathSciNet  MATH  Google Scholar 

  50. M. Bershadsky, H. Ooguri, Hidden SL(n) symmetry in conformal field theories, Comm. Math. Phys. 126 (1989), no. 1, 49–83.

    MathSciNet  MATH  Google Scholar 

  51. J. L. Petersen, J. Rasmussen, M. Yu, Conformal blocks for admissible representations in SL(2) current algebra, Nucl. Phys. B458 (1995), no. 1–2, 309–342.

    MathSciNet  MATH  Google Scholar 

  52. I. Macdonald, Symmetric Functions and Hall Polynomials, 2nd edition, Oxford Mathematical Monographs, Clarendon Press, Oxford, 1995.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to SIMON WOOD.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

WOOD, S. ADMISSIBLE LEVEL \( \mathfrak{osp}\left(1\left|2\right.\right) \) MINIMAL MODELS AND THEIR RELAXED HIGHEST WEIGHT MODULES. Transformation Groups 25, 887–943 (2020). https://doi.org/10.1007/s00031-020-09567-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00031-020-09567-3