Skip to main content
Log in

TOWARDS AN INTERSECTION CHOW COHOMOLOGY THEORY FOR GIT QUOTIENTS

  • Published:
Transformation Groups Aims and scope Submit manuscript

Abstract

We study the Fulton-MacPherson operational Chow rings of good moduli spaces of properly stable, smooth, Artin stacks. Such spaces are étale locally isomorphic to geometric invariant theory quotients of affine schemes, and are therefore natural extensions of GIT quotients. Our main result is that, with ℚ-coefficients, every operational class can be represented by a topologically strong cycle on the corresponding stack. Moreover, this cycle is unique modulo rational equivalence on the stack. Our methods also allow us to prove that if X is the good moduli space of a properly stable, smooth, Artin stack then the natural map Pic(X), L ↦ c1(L) is an isomorphism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Abramovich, M. Olsson, A. Vistoli, Tame stacks in positive characteristic, Ann. Inst. Fourier (Grenoble) 58 (2008), no. 4, 1057–1091.

    Article  MathSciNet  MATH  Google Scholar 

  2. J. Alper, Good moduli spaces for Artin stacks, Ann. Inst. Fourier (Grenoble) 63 (2013), no. 6, 2349–2402.

    Article  MathSciNet  MATH  Google Scholar 

  3. J. Alper, J. Hall, D. Rydh, A Luna étale slice theorem for algebraic stacks, arXiv:1504.06467 (2015).

  4. J.-F. Boutot, Singularités rationnelles et quotients par les groupes réductifs, Invent. Math. 88 (1987), no. 1, 65–68.

    Article  MathSciNet  MATH  Google Scholar 

  5. A. Corti, M. Hanamura, Motivic decomposition and intersection Chow groups. I, Duke Math. J. 103 (2000), no. 3, 459–522.

    Article  MathSciNet  MATH  Google Scholar 

  6. A. Corti, M. Hanamura, Motivic decomposition and intersection Chow groups. II, Pure Appl. Math. Q. 3 (2007), no. 1, Special Issue: In honor of Robert D. MacPherson. Part 3, 181–203.

  7. D. Cox, The homogeneous coordinate ring of a toric variety, J. Algebraic Geom. 4 (1995), no. 1, 17–50.

    MathSciNet  MATH  Google Scholar 

  8. D. Edidin, Equivariant geometry and the cohomology of the moduli space of curves, in: Handbook of Moduli (G. Farkas and I. Morrison eds.) (2013), pp. 259–292.

  9. D. Edidin, Strong regular embeddings of Deligne-Mumford stacks and hypertoric geometry, Michigan Math. J. 65 (2016), no. 2, 389–412.

    Article  MathSciNet  MATH  Google Scholar 

  10. D. Edidin, A. Geraschenko, M. Satriano, There is no degree map for 0-cycles on Artin stacks, Transform. Groups 18 (2013), no. 2, 385–389.

    Article  MathSciNet  MATH  Google Scholar 

  11. D. Edidin, W. Graham, Equivariant intersection theory, Invent. Math. 131 (1998), no. 3, 595–634.

    Article  MathSciNet  MATH  Google Scholar 

  12. D. Edidin, Y. Moore, Partial desingularizations of good moduli spaces of Artin toric stacks, Michigan Math. J. 61 (2012), no. 3, 451–474.

    Article  MathSciNet  MATH  Google Scholar 

  13. D. Edidin, Y. More, Integration on Artin toric stacks and Euler characteristics, Proc. Amer. Math. Soc. 141 (2013), no. 11, 3689–3699.

    Article  MathSciNet  MATH  Google Scholar 

  14. D. Edidin, D. Rydh, Canonical reduction of stabilizers of Artin stacks, arXiv:1710.03220 (2017).

  15. D. Edidin, M. Satriano, Strong cycles and intersection products on good moduli spaces, in: K-theory (Mumbai 2016), Tata Inst. Fund. Res. Stud. Math. Vol. 23, 2019, pp. 225–240.

  16. E. Friedlander, J. Ross, An approach to intersection theory on singular varieties using motivic complexes, Compos. Math. 152 (2016), no. 11, 2371–2404.

    Article  MathSciNet  MATH  Google Scholar 

  17. W. Fulton, Intersection Theory, 2nd ed., Springer-Verlag, Berlin, 1998.

    Book  MATH  Google Scholar 

  18. W. Fulton, R. MacPherson, Categorical Framework for the Study of Singular Spaces, Mem. Amer. Math. Soc. 31 (1981), no. 243.

  19. W. Fulton, R. MacPherson, F. Sottile, B. Sturmfels, Intersection theory on spherical varieties, J. Algebraic Geom. 4 (1995), no. 1, 181–193.

    MathSciNet  MATH  Google Scholar 

  20. W. Fulton, B. Sturmfels, Intersection theory on toric varieties, Topology 36 (1997), no. 2, 335–353.

    Article  MathSciNet  MATH  Google Scholar 

  21. A. Geraschenko, M. Satriano, Toric stacks I: The theory of stacky fans, Trans. Amer. Math. Soc. 367 (2015), no. 2, 1033–1071.

    Article  MathSciNet  MATH  Google Scholar 

  22. A. Geraschenko, M. Satriano, Toric stacks II: Intrinsic characterization of toric stacks, Trans. Amer. Math. Soc. 367 (2015), no. 2, 1073–1094.

    Article  MathSciNet  MATH  Google Scholar 

  23. H. Gillet, Intersection theory on algebraic stacks and Q-varieties, in: Proceedings of the Luminy conference on algebraic K-theory (Luminy, 1983), Vol. 34, 1984, pp. 193–240.

  24. A. Grothendieck, J. Dieudonné, Élements de Géométrie Algébrique I–V. Étude locale des schemas et des morphismes de schémas, Inst. Hautes Études Sci. Publ. Math. 20, 24, 28, 32 (1964, 1965, 1966, 1967).

  25. R. Hartshorne, Algebraic Geometry, Graduate Texts in Mathematics, No. 52. Springer-Verlag, New York, 1977.

  26. S. Kimura, Fractional intersection and bivariant theory, Comm. Algebra 20 (1992), no. 1, 285–302.

    Article  MathSciNet  MATH  Google Scholar 

  27. J. Kollár, S. Mori, Classification of three-dimensional flips, J. Amer. Math. Soc. 5 (1992), no. 3, 533–703.

    Article  MathSciNet  MATH  Google Scholar 

  28. A. Kresch, Cycle groups for Artin stacks, Invent. Math. 138 (1999), no. 3, 495–536.

    Article  MathSciNet  MATH  Google Scholar 

  29. D. Mumford, J. Fogarty, F. Kirwan, Geometric Invariant Theory, 3rd ed., Springer-Verlag, Berlin, 1994.

    Book  MATH  Google Scholar 

  30. The Stacks Project, http://stacks.math.columbia.edu, 2016.

  31. B. Totaro, Chow groups, Chow cohomology, and linear varieties, Forum Math. Sigma 2 (2014), e17, 25.

  32. A. Vistoli, Intersection theory on algebraic stacks and on their moduli spaces, Invent. Math. 97 (1989), no. 3, 613–670.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to DAN EDIDIN.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Dan Edidin Supported by Simons Collaboration Grant 315460.

Matthew Satriano Supported by a Discovery Grant from the National Science and Engineering Board of Canada.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

EDIDIN, D., SATRIANO, M. TOWARDS AN INTERSECTION CHOW COHOMOLOGY THEORY FOR GIT QUOTIENTS. Transformation Groups 25, 1103–1124 (2020). https://doi.org/10.1007/s00031-020-09553-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00031-020-09553-9

Navigation