Abstract
Let N be a connected and simply connected nilpotent Lie group, and let K be a subgroup of the automorphism group of N. We say that the pair (K, N) is a nilpotent Gelfand pair if \( {L}_K^1(N) \) is an abelian algebra under convolution. In this document we establish a geometric model for the Gelfand spectra of nilpotent Gelfand pairs (K, N) where the K-orbits in the center of N have a one-parameter cross section and satisfy a certain non-degeneracy condition. More specifically, we show that the one-to-one correspondence between the set Δ(K, N) of bounded K-spherical functions on N and the set \( \mathcal{A} \)(K, N) of K-orbits in the dual 𝔫* of the Lie algebra for N established in [BR08] is a homeomorphism for this class of nilpotent Gelfand pairs. This result had previously been shown for N a free group and N a Heisenberg group, and was conjectured to hold for all nilpotent Gelfand pairs in [BR08].
This is a preview of subscription content, access via your institution.
References
- [BJLR97]
C. Benson, J. Jenkins, R. Lipsman, G. Ratcliff, A geometric criterion for Gelfand pairs associated with the Heisenberg group, Pacific J. Math. 178 (1997), no. 1, 1–36.
- [BJR92]
C. Benson, J. Jenkins, G. Ratcliff, Bounded K-spherical functions on Heisenberg groups, J. Funct. Analysis 105 (1992), no. 2, 409–443.
- [BJR90]
C. Benson, J. Jenkins, G. Ratcliff, On Gelfand pairs associated with solvable Lie groups, Trans. Amer. Math. Soc. 321 (1990), no. 1, 85–116.
- [BJR99]
C. Benson, J. Jenkins, G. Ratcliff, The orbit method and Gelfand pairs associated with nilpotent Lie groups, J Geom. Analysis 9 (1999), no. 4, 569–582.
- [BJRW96]
C. Benson, J. Jenkins, G. Ratcliff, T. Worku, Spectra for Gelfand pairs associated with the Heisenberg group, Colloq. Math. 71 (1996), no. 2, 305–328.
- [BR98]
C. Benson, G. Ratcliff, Combinatorics and spherical functions on the Heisenberg group, Represent. Theory 2 (1998), 79–105 (electronic).
- [BR13]
C. Benson, G. Ratcliff, Geometric models for the spectra of certain Gelfand pairs associated with Heisenberg groups, Annali di Mat. Pura Appl. 192 (2013), no. 4, 719–740.
- [BR04]
C. Benson, G. Ratcliff, On multiplicity-free actions, in: Representations of Real and p-Adic Groups, Lecture Notes Series, Institute for Mathematical Sciences, Vol. 2, National University of Singapore, Singapore Univ. Press, Singapore, 2004, pp. 221–304.
- [BR08]
C. Benson, G. Ratcliff, The space of bounded spherical functions on the free 2-step nilpotent Lie group, Transform. Groups 13 (2008), no. 2, 243–281.
- [Bro73]
I. D. Brown, Dual topology of a nilpotent lie group, Ann. Sci. de l’École Norm. Sup. 6 (1973), no. 3, 407–411.
- [FR07]
F. Ferrari Ruffino, The topology of the spectrum for Gelfand pairs on Lie groups, Boll. dell’Unione Mat. Ital. 10 (2007), 569–579.
- [FRY12]
V. Fischer, F. Ricci, O. Yakimova, Nilpotent Gelfand pairs and spherical transforms of Schwartz functions I: Rank-one actions on the centre, Math. Z. 271 (2012), no. 1, 221–255.
- [FRY18]
V. Fischer, F. Ricci, O. Yakimova, Nilpotent Gelfand pairs and Schwartz extensions of spherical transforms via quotient pairs, J. Funct. Analysis 274 (2018), no. 4, 1076–1128.
- [GV88]
R. Gangolli, V. C. Varadarajan, Harmonic Analysis of Spherical Functions on Real Reductive Groups, Ergebnisse der Mathematik und ihrer Grenzgebiete, Bd. 101, Springer-Verlag, Berlin, 1988.
- [Hel84]
S. Helgason, Groups and Geometric Analysis. Integral Geometry, Invariant Differential Operators, and Spherical Functions, Pure and Applied Mathematics, Vol. 113, Academic Press, Orlando, FL, 1984.
- [HU91]
R. Howe, T. Umeda, The Capelli identity, the double commutant theorem, and multiplicity-free actions, Math. Annalen 290 (1991), no. 1, 565–619.
- [Kir04]
A. A. Kirillov, Lectures on the Orbit Method, Graduate Studies in Mathematics, Vol. 64, American Mathematical Society, Providence, RI, 2004.
- [LL94]
H. Leptin, J. Ludwig, Unitary Representation Theory of Exponential Lie Groups, De Gruyter Expositions in Mathematics, Vol. 18, Walter de Gruyter and Co., Berlin, 1994.
- [Lip80]
R. Lipsman, Orbit theory and harmonic analysis on Lie groups with co-compact nilradical, J. Math. Pures et Appl. 59 (1980), 337–374.
- [Lip82]
R. Lipsman, Orbit theory and representations of Lie groups with co-compact radical, J. Math. Pures et Appl. 61 (1982), 17–39.
- [OV12]
A. Onishchik, E. B. Vinberg, Lie Groups and Algebraic Groups, Springer Science and Business Media, Berlin, 2012.
- [Puk78]
L. Pukanszky, Unitary representations on Lie groups with co-compact radical and applications, Trans, Amer. Math. Society 236 (1978), 1–49.
- [Ric85]
F. Ricci, Commutative algebras of invariant functions on groups of Heisenberg type, J. London Math. Soc. 32 (1985), no. 2, 265–271.
- [Vin03]
Э. Б. Винберг, Коммутативные однородные пространства гейзенбергова типа, Труды ММО 64 (2003), 54–89. Engl. transl.: E. B. Vinberg, Communative homogeneous spaces of Heisenberg type, Trans. Moscow Math. Soc. 64 (2003), 47–80.
- [Wol06]
J. Wolf, Spherical functions on Euclidean space, J. Funct. Analysis 239 (2006), 127–136.
- [Yak05]
O. Yakimova, Gelfand Pairs, Dissertation, Rheinischen Friedrich-Wilhelms-Universität Bonn, 2004, Bonner Mathematische Schriften 374 (2005).
- [Yak06]
O. Yakimova, Principal Gelfand pairs, Transform. Groups 11 (2006), no. 2, 305–335.
Author information
Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supported by the National Science Foundation Award No. 1803059.
Rights and permissions
About this article
Cite this article
FRIEDLANDER, H., GRODZICKI, W., JOHNSON, W. et al. AN ORBIT MODEL FOR THE SPECTRA OF NILPOTENT GELFAND PAIRS. Transformation Groups 25, 859–886 (2020). https://doi.org/10.1007/s00031-019-09541-8
Published:
Issue Date: