Abstract
In this paper we will show that the pull-back of any regular differential form defined on the smooth locus of a GIT quotient of dimension at most four to any resolution yields a regular differential form.
This is a preview of subscription content, access via your institution.
References
A. Bia lynicki-Birula, J. Świecicka, Three theorems on existence of good quotients, Math. Annalen 307 (1997), no. 1, 143–149.
J. F. Boutot, Singularités rationnelles et quotients par les groupes réductifs, Invent. Math. 88 (1987), no. 1, 65–68.
D. A. Cox, J. B. Little, H. K. Schenck, Toric Varieties, Graduate Studies in Mathematics, Vol. 124, American Mathematical Society, Providence, RI, 2011.
I. Dolgachev, Lectures on Invariant Theory, London Mathematical Society Lecture Note Series, Vol. 296, Cambridge University Press, Cambridge, 2003.
J. M. Drézet, Luna's slice theorem and applications, in: Algebraic Group Actions and Quotients, Hindawi Publ. Corp., Cairo, 2004, pp. 39–89.
H. Esnault and E. Viehweg, Lectures on vanishing theorems, Vol. 20, Birkhäuser Verlag, Basel, 1992.
B. Fantechi, L. Göttsche, Lothar, L. Illusie, S. L. Kleiman, N. Nitsure, A. Vistoli, Fundamental Algebraic Geometry. Grothendieck's FGA Explained, Mathematical Surveys and Monographs, Vol 123, American Mathematical Society, Providence, RI, 2005.
P. Graf, S. J. Kovács, Potentially Du Bois spaces, J. of Singularities 8 (2014), 117–134.
D. Greb, S. Kebekus, S. J. Kovács, Extension theorems for differential forms and Bogomolov–Sommese vanishing on log canonical varieties, Compositio Math. 146 (2010), no. 1, 193–219.
D. Greb, S. Kebekus, S. J. Kovács, T. Peternell, Differential forms on log canonical spaces, Publ. Math. Inst. de Hautes Études Sci. (2011), no. 114, 87–169.
R. V. Gurjar, On a conjecture of C. T. C. Wall, J. Math. Kyoto Univ.31 (1991), no. 4, 1121–1124.
U. Görtz, T. Wedhorn, Algebraic Geometry I, Advanced Lectures in Mathematics, Vieweg, Wiesbaden, 2010.
R. Hartshorne, Algebraic Geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York, 1977.
R. Hartshorne, Stable reflexive sheaves, Mathematische Annalen 254 (1980), no. 2, 121–176.
J. Hausen, Geometric invariant theory based on Weil divisors, Compositio Math. 140 (2004), no. 6, 1518–1536.
S. Iitaka, Algebraic Geometry, Graduate Texts in Mathematics, Vol. 76, Springer-Verlag, New York, 1982.
S. Kebekus, Pull-back morphisms for reflexive differential forms, Advances in Math. 245 (2013), 78–112.
G. R. Kempf, Some quotient varieties have rational singularities, Michigan Math. J 24 (1977), no. 3, 347–352.
F. C. Kirwan, Partial desingularisations of quotients of nonsingular varieties and their Betti numbers, Annals of Math. 122 (1985), no. 1, 41–85.
J. Koll_ar, S. Mori, Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, Vol. 134, Cambridge University Press, Cambridge, 1998.
S. Kov_acs, Rational, log canonical, Du Bois singularities: on the conjectures of Kollár and Steenbrink, Compositio Math. 118 (1999), no. 2, 123–133.
S. Kov_acs, A characterization of rational singularities, Duke Math. J. 102 (2000), no. 2, 187–191.
H. Kraft, Geometrische Methoden in der Invariantentheorie, Friedr. Vieweg & Sohn, Braunschweig, 1984.
D. Luna, R. W. Richardson, A generalization of the Chevalley restriction theorem, Duke Math. J. 46 (1979), 487–496.
D. Luna, Slices étales, Soc. Math. France 33 (1973), 81–105.
Y. Matsushima, Espaces homogénes de Stein des groupes de Lie complexes, Nagoya Math. J. 16 (1960), 205–218.
D. Mumford, J. Fogarty, F. C. Kirwan, Geometric Invariant Theory, 3rd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 34, Springer-Verlag, Berlin, 1994.
Y. Namikawa, Deformation theory of singular symplectic n-folds, Math. Annalen 319 (2001), no. 3, 597–623.
Y. Namikawa, Extension of 2-forms and symplectic varieties, J. für die Reine und Angew. Math. 539 (2001), no. 3, 123–147.
H. Pinkham, Normal surface singularities with C*action, Math. Annalen 227 (1977), no. 2, 1183–193.
K. Saito, Theory of logarithmic differential forms and logarithmic vector fields, J. Fac. Sci. Univ. Tokyo. Sect. IA. Math. 27 (1980), no. 2, 265–291.
C. S. Seshadri, Quotient spaces modulo reductive algebraic groups, Annals of Math. 95 (1972), 511–556.
I. R. Shafarevich, Basic Algebraic Geometry, Grundlehren der mathematischen Wissenschaften, Vol. 213, 1974, Springer-Verlag, Berlin, 1977.
I. R. Shafarevich, Basic Algebraic Geometry. 2, Schemes and Complex Manifolds, Springer, Heidelberg, 2013.
D. van Straten, J. H. M. Steenbrink, Extendability of holomorphic differential forms near isolated hypersurface singularities, Abh. Math. Seminar Univ. Hamburg 55 (1985), 97–110.
J. H. M. Steenbrink, Mixed Hodge structures associated with isolated singularities, in: Singularities, Part 2 (Arcata, Calif., 1981), Proc. Sympos. Pure Math., Vol. 40, Amer. Math. Soc., Providence, RI, 1983, pp. 513–536.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
HEUVER, S. EXTENSION THEOREMS FOR DIFFERENTIAL FORMS ON LOW-DIMENSIONAL GIT QUOTIENTS. Transformation Groups 25, 81–125 (2020). https://doi.org/10.1007/s00031-019-09517-8
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00031-019-09517-8