A. Bia lynicki-Birula, J. Świecicka, Three theorems on existence of good quotients, Math. Annalen 307 (1997), no. 1, 143–149.
MathSciNet
Article
Google Scholar
J. F. Boutot, Singularités rationnelles et quotients par les groupes réductifs, Invent. Math. 88 (1987), no. 1, 65–68.
MathSciNet
Article
Google Scholar
D. A. Cox, J. B. Little, H. K. Schenck, Toric Varieties, Graduate Studies in Mathematics, Vol. 124, American Mathematical Society, Providence, RI, 2011.
I. Dolgachev, Lectures on Invariant Theory, London Mathematical Society Lecture Note Series, Vol. 296, Cambridge University Press, Cambridge, 2003.
J. M. Drézet, Luna's slice theorem and applications, in: Algebraic Group Actions and Quotients, Hindawi Publ. Corp., Cairo, 2004, pp. 39–89.
H. Esnault and E. Viehweg, Lectures on vanishing theorems, Vol. 20, Birkhäuser Verlag, Basel, 1992.
B. Fantechi, L. Göttsche, Lothar, L. Illusie, S. L. Kleiman, N. Nitsure, A. Vistoli, Fundamental Algebraic Geometry. Grothendieck's FGA Explained, Mathematical Surveys and Monographs, Vol 123, American Mathematical Society, Providence, RI, 2005.
P. Graf, S. J. Kovács, Potentially Du Bois spaces, J. of Singularities 8 (2014), 117–134.
MathSciNet
MATH
Google Scholar
D. Greb, S. Kebekus, S. J. Kovács, Extension theorems for differential forms and Bogomolov–Sommese vanishing on log canonical varieties, Compositio Math. 146 (2010), no. 1, 193–219.
MathSciNet
Article
Google Scholar
D. Greb, S. Kebekus, S. J. Kovács, T. Peternell, Differential forms on log canonical spaces, Publ. Math. Inst. de Hautes Études Sci. (2011), no. 114, 87–169.
MathSciNet
Article
Google Scholar
R. V. Gurjar, On a conjecture of C. T. C. Wall, J. Math. Kyoto Univ.31 (1991), no. 4, 1121–1124.
MathSciNet
Article
Google Scholar
U. Görtz, T. Wedhorn, Algebraic Geometry I, Advanced Lectures in Mathematics, Vieweg, Wiesbaden, 2010.
R. Hartshorne, Algebraic Geometry, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York, 1977.
R. Hartshorne, Stable reflexive sheaves, Mathematische Annalen 254 (1980), no. 2, 121–176.
MathSciNet
Article
Google Scholar
J. Hausen, Geometric invariant theory based on Weil divisors, Compositio Math. 140 (2004), no. 6, 1518–1536.
MathSciNet
Article
Google Scholar
S. Iitaka, Algebraic Geometry, Graduate Texts in Mathematics, Vol. 76, Springer-Verlag, New York, 1982.
S. Kebekus, Pull-back morphisms for reflexive differential forms, Advances in Math. 245 (2013), 78–112.
MathSciNet
Article
Google Scholar
G. R. Kempf, Some quotient varieties have rational singularities, Michigan Math. J 24 (1977), no. 3, 347–352.
MathSciNet
Article
Google Scholar
F. C. Kirwan, Partial desingularisations of quotients of nonsingular varieties and their Betti numbers, Annals of Math. 122 (1985), no. 1, 41–85.
MathSciNet
Article
Google Scholar
J. Koll_ar, S. Mori, Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, Vol. 134, Cambridge University Press, Cambridge, 1998.
S. Kov_acs, Rational, log canonical, Du Bois singularities: on the conjectures of Kollár and Steenbrink, Compositio Math. 118 (1999), no. 2, 123–133.
MathSciNet
Article
Google Scholar
S. Kov_acs, A characterization of rational singularities, Duke Math. J. 102 (2000), no. 2, 187–191.
MathSciNet
Article
Google Scholar
H. Kraft, Geometrische Methoden in der Invariantentheorie, Friedr. Vieweg & Sohn, Braunschweig, 1984.
D. Luna, R. W. Richardson, A generalization of the Chevalley restriction theorem, Duke Math. J. 46 (1979), 487–496.
MathSciNet
Article
Google Scholar
D. Luna, Slices étales, Soc. Math. France 33 (1973), 81–105.
Article
Google Scholar
Y. Matsushima, Espaces homogénes de Stein des groupes de Lie complexes, Nagoya Math. J. 16 (1960), 205–218.
MathSciNet
Article
Google Scholar
D. Mumford, J. Fogarty, F. C. Kirwan, Geometric Invariant Theory, 3rd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 34, Springer-Verlag, Berlin, 1994.
Y. Namikawa, Deformation theory of singular symplectic n-folds, Math. Annalen 319 (2001), no. 3, 597–623.
MathSciNet
Article
Google Scholar
Y. Namikawa, Extension of 2-forms and symplectic varieties, J. für die Reine und Angew. Math. 539 (2001), no. 3, 123–147.
MATH
Google Scholar
H. Pinkham, Normal surface singularities with C*action, Math. Annalen 227 (1977), no. 2, 1183–193.
K. Saito, Theory of logarithmic differential forms and logarithmic vector fields, J. Fac. Sci. Univ. Tokyo. Sect. IA. Math. 27 (1980), no. 2, 265–291.
MathSciNet
MATH
Google Scholar
C. S. Seshadri, Quotient spaces modulo reductive algebraic groups, Annals of Math. 95 (1972), 511–556.
MathSciNet
Article
Google Scholar
I. R. Shafarevich, Basic Algebraic Geometry, Grundlehren der mathematischen Wissenschaften, Vol. 213, 1974, Springer-Verlag, Berlin, 1977.
Book
Google Scholar
I. R. Shafarevich, Basic Algebraic Geometry. 2, Schemes and Complex Manifolds, Springer, Heidelberg, 2013.
Book
Google Scholar
D. van Straten, J. H. M. Steenbrink, Extendability of holomorphic differential forms near isolated hypersurface singularities, Abh. Math. Seminar Univ. Hamburg 55 (1985), 97–110.
MathSciNet
Article
Google Scholar
J. H. M. Steenbrink, Mixed Hodge structures associated with isolated singularities, in: Singularities, Part 2 (Arcata, Calif., 1981), Proc. Sympos. Pure Math., Vol. 40, Amer. Math. Soc., Providence, RI, 1983, pp. 513–536.