Skip to main content
Log in

REPRESENTATIONS OF TWISTED YANGIANS OF TYPES B, C, D: II

  • Published:
Transformation Groups Aims and scope Submit manuscript

Abstract

We continue the study of finite-dimensional irreducible representations of twisted Yangians associated to symmetric pairs of types B, C and D, with focus on those of types BI, CII and DI. After establishing that, for all twisted Yangians of these types, the highest weight of such a module necessarily satisfies a certain set of relations, we classify the finite-dimensional irreducible representations of twisted Yangians for the pairs (\( \mathfrak{s}{\mathfrak{o}}_N \), \( \mathfrak{s}{\mathfrak{o}}_{N-2} \)\( \mathfrak{s}{\mathfrak{o}}_2 \)) and (\( \mathfrak{s}{\mathfrak{o}}_{2n+1} \), \( \mathfrak{s}{\mathfrak{o}}_{2n} \)).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Arnaudon, J. Avan, N. Crampé, L. Frappat, E. Ragoucy, R-matrix presentation for super-Yangians Y (osp(m|2n)), J. Math. Phys. 44 (2003), no. 1, 302–308.

    Article  MathSciNet  Google Scholar 

  2. D. Arnaudon, A. Molev, E. Ragoucy, On the R-matrix realization of Yangians and their representations, Ann. Henri Poincaré 7 (2006), no. 7-8, 1269–1325.

    Article  MathSciNet  Google Scholar 

  3. M. Balagovic, S. Kolb, The bar involution for quantum symmetric pairs, Represent. Theory 19 (2015), 186–210.

    Article  MathSciNet  Google Scholar 

  4. M. Balagovic, S. Kolb, Universal K-matrix for quantum symmetric pairs, J. Reine Angew. Math., DOI: doi:https://doi.org/10.1515/crelle-2016-0012.

  5. H. Bao, J. Kujawa, Y. Li, W. Wang, Geometric Schur duality of classical type, Transform. Groups 23 (2018), no. 2, 329–389.

    Article  MathSciNet  Google Scholar 

  6. H. Bao, P. Shan, W. Wang, B. Webster, Categorification of quantum symmetric pairs I, Quantum Topol. 9 (2018), no. 4, 643–714.

    Article  MathSciNet  Google Scholar 

  7. H. Bao, W. Wang, A new approach to Kazhdan–Lusztig theory of type B via quantum symmetric pairs, Astérisque 2018, no. 402, vii+134 pp.

  8. V. Chari, A. Pressley, A Guide to Quantum Groups, Cambridge University Press, Cambridge, 1994.

    MATH  Google Scholar 

  9. В. Г. Дринфельд, Новая реализация янгианов и квантованных аффинных алгебр, ДАН СССР 286 (1987), no. 1, 13–17. Engl. transl.: V. G. Drinfeld, A new realization of Yangians and of quantum affine algebras, Soviet Math. Dokl. 36 (1988), no. 2, 212–216.

  10. M. Ehrig, C. Stroppel, Nazarov–Wenzl algebras, coideal subalgebras and categorified skew Howe duality, Adv. Math. 331 (2018), 58–142.

    Article  MathSciNet  Google Scholar 

  11. Z. Fan, Y. Li, Geometric Schur Duality of Classical Type, II, Trans. Amer. Math. Soc. Ser. B 2 (2015), 51–92.

    Article  MathSciNet  Google Scholar 

  12. Z. Fan, Y. Li, Affine flag varieties and quantum symmetric pairs, II. Multiplication formula, to appear in J. Pure and Applied Algebra, arXiv:1701. 06348v3 (2019).

  13. Z. Fan, C.-J. Lai, Y. Li, L. Luo, W. Wang, Affine flag varieties and quantum symmetric pairs, to appear in Mem. Amer. Math. Soc.

  14. Z. Fan, C.-J. Lai, Y. Li, L. Luo, W. Wang, Affine Hecke algebras and quantum symmetric pairs, arXiv:1609.06199v2 (2017).

  15. N. Guay, V. Regelskis, Twisted Yangians for symmetric pairs of types B, C, D, Math. Z. 284 (2016), no. 1-2, 131–166.

    Article  MathSciNet  Google Scholar 

  16. N. Guay, V. Regelskis, C. Wendlandt, Twisted Yangians of small rank, J. Math. Phys. 57, 041703 (2016).

    Article  MathSciNet  Google Scholar 

  17. N. Guay, V. Regelskis, C. Wendlandt, Representations of twisted Yangians of types B, C, D: I, Sel. Math. New Ser. 23 (2017), no. 3, 2071–2156.

    Article  MathSciNet  Google Scholar 

  18. N. Guay, V. Regelskis, C. Wendlandt, Representations of twisted Yangians of types B, C, D: III, in preparation.

  19. I. Heckenberger, S. Kolb, Homogeneous right coideal subalgebras of quantized enveloping algebras, Bull. Lond. Math. Soc. 44 (2012), no. 4, 837–848.

    Article  MathSciNet  Google Scholar 

  20. S. Khoroshkin, M. Nazarov, Twisted Yangians and Mickelsson algebras. I, Selecta Math. (N.S.) 13 (2007), no. 1, 69–136.

    Article  MathSciNet  Google Scholar 

  21. С. Хорошкин, М. Назаров, Скрученные янгианы и алгебры Микельссона. II, Алгебра и анализ 21 (2009), вып. 1, 153–228. Engl. transl.: S. Khoroshkin, M. Nazarov, Twisted Yangians and Mickelsson algebras. II, St. Petersburg Math. J. 21 (2010), no. 1, 111–161.

  22. S. Khoroshkin, M. Nazarov, Mickelsson algebras and representations of Yangians, Trans. Amer. Math. Soc. 364 (2012), no. 3, 1293–1367.

    Article  MathSciNet  Google Scholar 

  23. S. Khoroshkin, M. Nazarov, P. Papi, Irreducible representations of Yangians, J. Algebra 346 (2011), 189–226.

    Article  MathSciNet  Google Scholar 

  24. S. Kolb, Quantum symmetric Kac–Moody pairs, Adv. Math. 267 (2014), 395–469.

    Article  MathSciNet  Google Scholar 

  25. S. Kolb, Braided module categories via quantum symmetric pairs, arXiv:1705. 04238 (2017).

  26. S. Kolb, J. Pellegrini, Braid group actions on coideal subalgebras of quantized enveloping algebras, J. Algebra 336 (2011), 395–416.

    Article  MathSciNet  Google Scholar 

  27. G. Letzter, Symmetric pairs for quantized enveloping algebras, J. Algebra 220 (1999), no. 2, 729–767.

    Article  MathSciNet  Google Scholar 

  28. G. Letzter, Coideal Subalgebras and Quantum Symmetric Pairs, in: New Directions in Hopf Algebras, Math. Sci. Res. Inst. Publ., Vol. 43, Cambridge Univ. Press, Cambridge, 2002, pp. 117–165.

  29. G. Letzter, Cartan subalgebras for quantum symmetric pair coideals, Represent. Theory 23 (2019), 88–153.

    Article  MathSciNet  Google Scholar 

  30. А. Молев, М. Назаров, Г. Ольшанский, Янгианы и классические алгебры Ли, УМН 51 (1996), вып. 2(308), 27–104. Engl. transl.: A. Molev, M. Nazarov, G. Olshanskii, Yangians and classical Lie algebras, Russ. Math. Surv. 51 (1996), no. 2, 205–282.

    Article  MathSciNet  Google Scholar 

  31. A. Molev, Representations of twisted Yangians, Lett. Math. Phys. 26 (1992), 211–218.

    Article  MathSciNet  Google Scholar 

  32. A. Molev, Finite-dimensional irreducible representations of twisted Yangians, J. Math. Phys. 39 (1998), no. 10, 5559–5600.

    Article  MathSciNet  Google Scholar 

  33. A. Molev, Irreducibility criterion for tensor products of Yangian evaluation modules, Duke Math. J. 112 (2002), no. 2, 307–341.

    Article  MathSciNet  Google Scholar 

  34. A. Molev, Skew representations of twisted Yangians, Selecta Math. (N.S.) 12 (2006), no. 1, 1–38.

    Article  MathSciNet  Google Scholar 

  35. A. Molev, Yangians and Classical Lie Algebra, Mathematical Surveys and Monographs, Vol. 143, American Mathematical Society, Providence, RI, 2007.

  36. A. Molev, E. Ragoucy, Representations of reflection algebras, Rev. Math. Phys. 14 (2002), no. 3, 317–342.

    Article  MathSciNet  Google Scholar 

  37. M. Nazarov, Representations of twisted Yangians associated with skew Young diagrams, Selecta Math. (N.S.) 10 (2004), no. 1, 71–129.

    Article  MathSciNet  Google Scholar 

  38. G. Olshanskii, Twisted Yangians and infinite-dimensional classical Lie algebras, in: Quantum Groups (Leningrad, 1990), Lecture Notes in Math. 1510, Springer, Berlin, 1992, pp. 104–119.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. GUAY.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supported by a Discovery Grant of the Natural Sciences and Engineering Research Council of Canada.

Supported in part by the Engineering and Physical Sciences Research Council of the United Kingdom, grant number EP/K031805/1. V.R. thanks the University of Alberta for its hospitality.

Supported by an Alexander Graham Bell Canada Graduate Scholarship (Doctoral Program) of the Natural Sciences and Engineering Research Council of Canada.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

GUAY, N., REGELSKIS, V. & WENDLANDT, C. REPRESENTATIONS OF TWISTED YANGIANS OF TYPES B, C, D: II. Transformation Groups 24, 1015–1066 (2019). https://doi.org/10.1007/s00031-019-09514-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00031-019-09514-x

Navigation