Skip to main content
Log in

INTERSECTION MULTIPLICITY ONE FOR CLASSICAL GROUPS

  • Published:
Transformation Groups Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

In this note we show that when G is a classical semi-simple algebraic group, B ⊂ G a Borel subgroup, and X = G/B, then the structure coefficients of the Belkale–Kumar product ⨀0 on H*(X, Z) are all either 0 or 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Billey, T. Braden, Lower bounds for Kazhdan–Lusztig polynomials from patterns, Transform. Groups 8 (2003), no. 4, 321–332.

    Article  MathSciNet  Google Scholar 

  2. P. Belkale, S. Kumar, Eigenvalue problem and a new product in cohomology of flag varieties, Invent. Math. 166 (2006), 185–228.

    Article  MathSciNet  Google Scholar 

  3. P. Belkale, S. Kumar, Private communication.

  4. J. Dixmier, Enveloping Algebras, Graduate Studies in Mathematics, Vol. 11, American Mathematical Society, Providence, RI, 1996.

  5. R. Dewji, I. Dimitrov, A. McCabe, M. Roth, D. Wehlau, J. Wilson, Decomposing inversion sets of permutations and applications to faces of the Littlewood–Richardson cone, J. Algebraic Comb. 45 (2017), no. 4, 1173–1216.

    Article  MathSciNet  Google Scholar 

  6. I. Dimitrov, M. Roth, Cup products of line bundles on homogeneous varieties and generalized PRV components of multiplicity one, Algebra & Number Theory 11 (2017), no. 4, 767–815.

    Article  MathSciNet  Google Scholar 

  7. B. Kostant, Lie algebra cohomology and the generalized Borel–Weil theorem, Ann. of Math. (2) 74 (1961), 329–387.

    Article  MathSciNet  Google Scholar 

  8. H.-F. Lai, On the topology of the even-dimensional complex quadrics, Proc. Amer. Math. Soc. 46 (1974), 419–425.

    Article  MathSciNet  Google Scholar 

  9. N. Ressayre, Multiplicative formulas in Schubert calculus and quiver representation, Indag. Math. (N.S.) 22 (2011), no. 1–2, 87–102.

    Article  MathSciNet  Google Scholar 

  10. N. Ressayre, Geometric invariant theory and generalized eigenvalue problem II, Annales de l'Institute Fourier 61 (2011), n°4, 1467–1491.

    Article  MathSciNet  Google Scholar 

  11. E. Richmond, A partial Horn recursion in the cohomology of flag varieties, J. Algebraic Combin. 30 (2009), no. 1, 1–17.

    Article  MathSciNet  Google Scholar 

  12. E. Richmond, A multiplicative formula for structure constants in the cohomology of flag varieties, Michigan Math. J. 61 (2012), no. 1, 3–17.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to MIKE ROTH.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Research partially supported by an NSERC grant.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

DIMITROV, I., ROTH, M. INTERSECTION MULTIPLICITY ONE FOR CLASSICAL GROUPS. Transformation Groups 24, 1001–1014 (2019). https://doi.org/10.1007/s00031-018-9509-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00031-018-9509-2

Keywords

Navigation