P. Alexandersson, Polynomials defined by tableaux and linear recurrences, Electron. J. Combin. 23 (2016), no. 1, Paper 1.47, 24.
F. Ardila, T. Bliem, D. Salazar, Gelfand–Tsetlin polytopes and Feigin–Fourier–Littelmann–Vinberg polytopes as marked poset polytopes, J. Combin. Theory Ser. A 118 (2011), no. 8, 2454–2462.
MathSciNet
Article
MATH
Google Scholar
I. Assem, C. Reutenauer, D. Smith, Friezes, Adv. Math. 225 (2010), no. 6, 3134–3165.
MathSciNet
Article
MATH
Google Scholar
A. Barvinok, J. E. Pommersheim, An algorithmic theory of lattice points in polyhedra, in: New Perspectives in Algebraic Combinatorics (Berkeley, CA, 1996–97), Math. Sci. Res. Inst. Publ., Vol. 38, Cambridge Univ. Press, Cambridge, 1999, pp. 91–147.
M. Beck, S. Robins, Computing the Continuous Discretely, 2nd ed., Undergraduate Texts in Mathematics, Springer, New York, 2015.
S. Cecotti, M. Del Zotto, Y -systems, Q-systems, and 4D
\( \mathcal{N} \) = 2 supersymmetric QFT, J. Phys. A 47 (2014), no. 47, 474001, 40.
V. Chari, On the fermionic formula and the Kirillov–Reshetikhin conjecture, Internat. Math. Res. Notices (2001), no. 12, 629–654.
V. Chari, A. Moura, The restricted Kirillov–Reshetikhin modules for the current and twisted current algebras, Comm. Math. Phys. 266 (2006), no. 2, 431–454.
MathSciNet
Article
MATH
Google Scholar
V. Chari, A. Moura, Kirillov–Reshetikhin modules associated to G
2, in: Lie Algebras, Vertex Operator Algebras and Their Applications, Contemp. Math., Vol. 442, Amer. Math. Soc., Providence, RI, 2007, pp. 41–59.
The Sage Developers, Sage Mathematics Software (Version 6:3), 2014, http://www.sagemath.org.
P. Di Francesco, R. Kedem, Proof of the combinatorial Kirillov–Reshetikhin conjecture, Internat. Math. Res. Notices (2008), no. 7, Art. ID rnn006, 57.
P. Di Francesco, R. Kedem, Q-systems, heaps, paths and cluster positivity, Comm. Math. Phys. 293 (2010), no. 3, 727–802.
MathSciNet
Article
MATH
Google Scholar
E. Ehrhart, Sur les polyèdres rationnels homothétiques à n dimensions, C. R. Acad. Sci. Paris 254 (1962), 616–618.
MathSciNet
MATH
Google Scholar
E. Feigin, G. Fourier, P. Littelmann, PBW filtration and bases for irreducible modules in type A
n, Transform. Groups 16 (2011), no. 1, 71–89.
MathSciNet
Article
MATH
Google Scholar
G. Fourier, P. Littelmann, Tensor product structure of affine Demazure modules and limit constructions, Nagoya Math. J. 182 (2006), 171–198.
MathSciNet
Article
MATH
Google Scholar
G. Fourier, P. Littelmann, Weyl modules, Demazure modules, KR-modules, crystals, fusion products and limit constructions, Adv. Math. 211 (2007), no. 2, 566–593.
MathSciNet
Article
MATH
Google Scholar
G. Fourier, M. Okado, A. Schilling, Kirillov–Reshetikhin crystals for nonexceptional types, Adv. Math. 222 (2009), no. 3, 1080–1116.
MathSciNet
Article
MATH
Google Scholar
A.-S. Gleitz, On the KNS conjecture in type E, Ann. Comb. 18 (2014), no. 4, 617–643.
MathSciNet
Article
MATH
Google Scholar
G. Hatayama, A. Kuniba, M. Okado, T. Takagi, Z. Tsuboi, Paths, crystals and fermionic formulae, in: MathPhys Odyssey, 2001, Prog. Math. Phys., Vol. 23, Birkhäuser Boston, Boston, MA, 2002, pp. 205–272.
G. Hatayama, A. Kuniba, M. Okado, T. Takagi, Y. Yamada, Remarks on fermionic formula, in: Recent Developments in Quantum Affine Algebras and Related Topics (Raleigh, NC, 1998), Contemp. Math., Vol. 248, Amer. Math. Soc., Providence, RI, 1999, pp. 243–291.
D. Hernandez, The Kirillov–Reshetikhin conjecture and solutions of T-systems, J. Reine Angew. Math. 596 (2006), 63–87.
MathSciNet
MATH
Google Scholar
D. Hernandez, Kirillov–Reshetikhin conjecture: the general case, Int. Math. Res. Not. IMRN (2010), no. 1, 149–193.
D. Hernandez and B. Leclerc, A cluster algebra approach to q-characters of Kirillov–Reshetikhin modules, J. Eur. Math. Soc. (JEMS) 18 (2016), no. 5, 1113–1159.
MathSciNet
Article
MATH
Google Scholar
D. Hernandez, H. Nakajima, Level 0 monomial crystals, Nagoya Math. J. 184 (2006), 85–153.
MathSciNet
Article
MATH
Google Scholar
J. Hong, S.-J. Kang, Introduction to Quantum Groups and Crystal Bases, Graduate Studies in Mathematics, Vol. 42, American Mathematical Society, Providence, RI, 2002.
J. E. Humphreys, Introduction to Lie Algebras and Representation Theory, Graduate Texts in Mathematics, Vol. 9, Springer-Verlag, New York, 1978.
J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge Studies in Advanced Mathematics, Vol. 29, Cambridge University Press, Cambridge, 1990.
M. Kashiwara, Similarity of crystal bases, in: Lie Algebras and Their Representations (Seoul, 1995), Contemp. Math., Vol. 194, Amer. Math. Soc., Providence, RI, 1996, pp. 177–186.
B. Keller, S. Scherotzke, Linear recurrence relations for cluster variables of affine quivers, Adv. Math. 228 (2011), no. 3, 1842–1862.
MathSciNet
Article
MATH
Google Scholar
А. Н. Кириллов, Тождества для дилогарифмической функции Роджера, связанные с простыми алгебрами Ли, Зап. научн. сем. ЛОМИ 164 (1987), 121–133. Engl. transl.: A. N. Kirillov, Identities for the Rogers dilogarithm function connected with simple Lie algebras, J. Soviet Math. 47 (1989), no. 2, 2450–2459.
А. Н. Кириллов, Н. Ю. Решетихин, Представления янгианов и кратности вхождения неприводимых компонент тензорного произведения представлений простых алгебр Ли, Зап. научн. сем. ЛОМИ 160 (1987), 211–221. Engl. transl.: A. N. Kirillov, N. Yu. Reshetikhin, Representations of Yangians and multiplicities of occurrence of the irreducible components of the tensor product of representations of simple Lie algebras, J. Soviet Math. 52 (1990), no. 3, 3156–3164.
M. Kleber, Combinatorial structure of finite-dimensional representations of Yangians: the simply-laced case, Internat. Math. Res. Notices (1997), no. 4, 187–201.
A. Kuniba, T. Nakanishi, J. Suzuki, T-systems and Y -systems in integrable systems, J. Phys. A 44 (2011), no. 10, 103001, 146.
A. Kuniba, M. Okado, J. Suzuki, Y. Yamada, Difference L operators related to q-characters, J. Phys. A 35 (2002), no. 6, 1415–1435.
MathSciNet
Article
MATH
Google Scholar
D. Kus, Realization of affine type A Kirillov–Reshetikhin crystals via polytopes, J. Combin. Theory Ser. A 120 (2013), no. 8, 2093–2117.
MathSciNet
Article
MATH
Google Scholar
J.-H. Kwon, RSK correspondence and classically irreducible Kirillov–Reshetikhin crystals, J. Combin. Theory Ser. A 120 (2013), no. 2, 433–452.
MathSciNet
Article
MATH
Google Scholar
C.-h. Lee, A proof of the KNS conjecture: D
r
case, J. Phys. A 46 (2013), no. 16, 165201, 12.
C.-h. Lee, Linear recurrence relations in Q-systems and difference L-operators, J. Phys. A 48 (2015), no. 19, 195201.
MathSciNet
Article
MATH
Google Scholar
C.-h. Lee, KR-quasipolynomial, https://github.com/chlee-0/KR-quasipolynomial (2017).
C.-h. Lee, LinearPowerSum, https://github.com/chlee-0/LinearPowerSum (2017).
C.-h. Lee, Positivity and periodicity of Q-systems in the WZW fusion ring, Adv. Math. 311 (2017), 532–568.
MathSciNet
Article
MATH
Google Scholar
J.-R. Li, K. Naoi, Graded limits of minimal affinizations over the quantum loop algebra of type G
2, Algebr. Represent. Theory 19 (2016), no. 4, 957–973.
MathSciNet
Article
MATH
Google Scholar
A. Moura, Restricted limits of minimal affinizations, Pacific J. Math. 244 (2010), no. 2, 359–397.
MathSciNet
Article
MATH
Google Scholar
A. Moura, F. Pereira, Graded limits of minimal affinizations and beyond: the multiplicity free case for type E
6, Algebra Discrete Math. 12 (2011), no. 1, 69–115.
MathSciNet
MATH
Google Scholar
W. Nahm, S. Keegan, Integrable deformations of CFTs and the discrete Hirota equations, arXiv:0905.3776v2 (2009).
H. Nakajima, t-analogs of q-characters of Kirillov–Reshetikhin modules of quantum affine algebras, Represent. Theory 7 (2003), 259–274 (electronic).
K. Naoi, Demazure modules and graded limits of minimal affinizations, Represent. Theory 17 (2013), 524–556.
MathSciNet
Article
MATH
Google Scholar
K. Naoi, Graded limits of minimal affinizations in type D, SIGMA Symmetry Integrability Geom. Methods Appl. 10 (2014), Paper 047, 20.
M. Okado, Simplicity and similarity of Kirillov-Reshetikhin crystals, in: Recent Developments in Algebraic and Combinatorial Aspects of Representation Theory, Contemp. Math., Vol. 602, Amer. Math. Soc., Providence, RI, 2013, pp. 183–194.
M. Okado, A. Schilling, Existence of Kirillov–Reshetikhin crystals for nonexceptional types, Represent. Theory 12 (2008), 186–207.
MathSciNet
Article
MATH
Google Scholar
T. Scrimshaw, A crystal to rigged configuration bijection and the filling map for type
\( {D}_4^{(3)} \), J. Algebra 448 (2016), 294–349.
MathSciNet
Article
MATH
Google Scholar
R. P. Stanley, Decompositions of rational convex polytopes, Ann. Discrete Math. 6 (1980), 333–342.
MathSciNet
Article
MATH
Google Scholar
S. Verdoolaege, K. Woods, Counting with rational generating functions, J. Symbolic Comput. 43 (2008), no. 2, 75–91.
MathSciNet
Article
MATH
Google Scholar