Skip to main content

LINEAR RECURRENCE RELATIONS IN Q-SYSTEMS VIA LATTICE POINTS IN POLYHEDRA

Abstract

We prove that the sequence of the characters of the Kirillov–Reshetikhin (KR) modules \( {W}_m^{(a)} \), m ∈ ℤm≥0 associated to a node a of the Dynkin diagram of a complex simple Lie algebra \( \mathfrak{g} \) satisfies a linear recurrence relation except for some cases in types E7 and E8. To this end we use the Q-system and the existing lattice point summation formula for the decomposition of KR modules, known as domino removal rules when \( \mathfrak{g} \) is of classical type. As an application, we show how to reduce some unproven lattice point summation formulas in exceptional types to finite problems in linear algebra and also give a new proof of them in type G2, which is the only completely proven case when KR modules have an irreducible summand with multiplicity greater than 1. We also apply the recurrence to prove that the function dim \( {W}_m^{(a)} \) is a quasipolynomial in m and establish its properties. We conjecture that there exists a rational polytope such that its Ehrhart quasipolynomial in m is dim \( {W}_m^{(a)} \) and the lattice points of its m-th dilate carry the same crystal structure as the crystal associated with \( {W}_m^{(a)} \).

This is a preview of subscription content, access via your institution.

References

  1. P. Alexandersson, Polynomials defined by tableaux and linear recurrences, Electron. J. Combin. 23 (2016), no. 1, Paper 1.47, 24.

  2. F. Ardila, T. Bliem, D. Salazar, Gelfand–Tsetlin polytopes and Feigin–Fourier–Littelmann–Vinberg polytopes as marked poset polytopes, J. Combin. Theory Ser. A 118 (2011), no. 8, 2454–2462.

    MathSciNet  Article  MATH  Google Scholar 

  3. I. Assem, C. Reutenauer, D. Smith, Friezes, Adv. Math. 225 (2010), no. 6, 3134–3165.

    MathSciNet  Article  MATH  Google Scholar 

  4. A. Barvinok, J. E. Pommersheim, An algorithmic theory of lattice points in polyhedra, in: New Perspectives in Algebraic Combinatorics (Berkeley, CA, 1996–97), Math. Sci. Res. Inst. Publ., Vol. 38, Cambridge Univ. Press, Cambridge, 1999, pp. 91–147.

  5. M. Beck, S. Robins, Computing the Continuous Discretely, 2nd ed., Undergraduate Texts in Mathematics, Springer, New York, 2015.

  6. S. Cecotti, M. Del Zotto, Y -systems, Q-systems, and 4D \( \mathcal{N} \) = 2 supersymmetric QFT, J. Phys. A 47 (2014), no. 47, 474001, 40.

  7. V. Chari, On the fermionic formula and the Kirillov–Reshetikhin conjecture, Internat. Math. Res. Notices (2001), no. 12, 629–654.

  8. V. Chari, A. Moura, The restricted Kirillov–Reshetikhin modules for the current and twisted current algebras, Comm. Math. Phys. 266 (2006), no. 2, 431–454.

    MathSciNet  Article  MATH  Google Scholar 

  9. V. Chari, A. Moura, Kirillov–Reshetikhin modules associated to G 2, in: Lie Algebras, Vertex Operator Algebras and Their Applications, Contemp. Math., Vol. 442, Amer. Math. Soc., Providence, RI, 2007, pp. 41–59.

  10. The Sage Developers, Sage Mathematics Software (Version 6:3), 2014, http://www.sagemath.org.

  11. P. Di Francesco, R. Kedem, Proof of the combinatorial Kirillov–Reshetikhin conjecture, Internat. Math. Res. Notices (2008), no. 7, Art. ID rnn006, 57.

  12. P. Di Francesco, R. Kedem, Q-systems, heaps, paths and cluster positivity, Comm. Math. Phys. 293 (2010), no. 3, 727–802.

    MathSciNet  Article  MATH  Google Scholar 

  13. E. Ehrhart, Sur les polyèdres rationnels homothétiques à n dimensions, C. R. Acad. Sci. Paris 254 (1962), 616–618.

    MathSciNet  MATH  Google Scholar 

  14. E. Feigin, G. Fourier, P. Littelmann, PBW filtration and bases for irreducible modules in type A n, Transform. Groups 16 (2011), no. 1, 71–89.

    MathSciNet  Article  MATH  Google Scholar 

  15. G. Fourier, P. Littelmann, Tensor product structure of affine Demazure modules and limit constructions, Nagoya Math. J. 182 (2006), 171–198.

    MathSciNet  Article  MATH  Google Scholar 

  16. G. Fourier, P. Littelmann, Weyl modules, Demazure modules, KR-modules, crystals, fusion products and limit constructions, Adv. Math. 211 (2007), no. 2, 566–593.

    MathSciNet  Article  MATH  Google Scholar 

  17. G. Fourier, M. Okado, A. Schilling, Kirillov–Reshetikhin crystals for nonexceptional types, Adv. Math. 222 (2009), no. 3, 1080–1116.

    MathSciNet  Article  MATH  Google Scholar 

  18. A.-S. Gleitz, On the KNS conjecture in type E, Ann. Comb. 18 (2014), no. 4, 617–643.

    MathSciNet  Article  MATH  Google Scholar 

  19. G. Hatayama, A. Kuniba, M. Okado, T. Takagi, Z. Tsuboi, Paths, crystals and fermionic formulae, in: MathPhys Odyssey, 2001, Prog. Math. Phys., Vol. 23, Birkhäuser Boston, Boston, MA, 2002, pp. 205–272.

  20. G. Hatayama, A. Kuniba, M. Okado, T. Takagi, Y. Yamada, Remarks on fermionic formula, in: Recent Developments in Quantum Affine Algebras and Related Topics (Raleigh, NC, 1998), Contemp. Math., Vol. 248, Amer. Math. Soc., Providence, RI, 1999, pp. 243–291.

  21. D. Hernandez, The Kirillov–Reshetikhin conjecture and solutions of T-systems, J. Reine Angew. Math. 596 (2006), 63–87.

    MathSciNet  MATH  Google Scholar 

  22. D. Hernandez, Kirillov–Reshetikhin conjecture: the general case, Int. Math. Res. Not. IMRN (2010), no. 1, 149–193.

  23. D. Hernandez and B. Leclerc, A cluster algebra approach to q-characters of Kirillov–Reshetikhin modules, J. Eur. Math. Soc. (JEMS) 18 (2016), no. 5, 1113–1159.

    MathSciNet  Article  MATH  Google Scholar 

  24. D. Hernandez, H. Nakajima, Level 0 monomial crystals, Nagoya Math. J. 184 (2006), 85–153.

    MathSciNet  Article  MATH  Google Scholar 

  25. J. Hong, S.-J. Kang, Introduction to Quantum Groups and Crystal Bases, Graduate Studies in Mathematics, Vol. 42, American Mathematical Society, Providence, RI, 2002.

  26. J. E. Humphreys, Introduction to Lie Algebras and Representation Theory, Graduate Texts in Mathematics, Vol. 9, Springer-Verlag, New York, 1978.

  27. J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge Studies in Advanced Mathematics, Vol. 29, Cambridge University Press, Cambridge, 1990.

  28. M. Kashiwara, Similarity of crystal bases, in: Lie Algebras and Their Representations (Seoul, 1995), Contemp. Math., Vol. 194, Amer. Math. Soc., Providence, RI, 1996, pp. 177–186.

  29. B. Keller, S. Scherotzke, Linear recurrence relations for cluster variables of affine quivers, Adv. Math. 228 (2011), no. 3, 1842–1862.

    MathSciNet  Article  MATH  Google Scholar 

  30. А. Н. Кириллов, Тождества для дилогарифмической функции Роджера, связанные с простыми алгебрами Ли, Зап. научн. сем. ЛОМИ 164 (1987), 121–133. Engl. transl.: A. N. Kirillov, Identities for the Rogers dilogarithm function connected with simple Lie algebras, J. Soviet Math. 47 (1989), no. 2, 2450–2459.

  31. А. Н. Кириллов, Н. Ю. Решетихин, Представления янгианов и кратности вхождения неприводимых компонент тензорного произведения представлений простых алгебр Ли, Зап. научн. сем. ЛОМИ 160 (1987), 211–221. Engl. transl.: A. N. Kirillov, N. Yu. Reshetikhin, Representations of Yangians and multiplicities of occurrence of the irreducible components of the tensor product of representations of simple Lie algebras, J. Soviet Math. 52 (1990), no. 3, 3156–3164.

  32. M. Kleber, Combinatorial structure of finite-dimensional representations of Yangians: the simply-laced case, Internat. Math. Res. Notices (1997), no. 4, 187–201.

  33. A. Kuniba, T. Nakanishi, J. Suzuki, T-systems and Y -systems in integrable systems, J. Phys. A 44 (2011), no. 10, 103001, 146.

  34. A. Kuniba, M. Okado, J. Suzuki, Y. Yamada, Difference L operators related to q-characters, J. Phys. A 35 (2002), no. 6, 1415–1435.

    MathSciNet  Article  MATH  Google Scholar 

  35. D. Kus, Realization of affine type A Kirillov–Reshetikhin crystals via polytopes, J. Combin. Theory Ser. A 120 (2013), no. 8, 2093–2117.

    MathSciNet  Article  MATH  Google Scholar 

  36. J.-H. Kwon, RSK correspondence and classically irreducible Kirillov–Reshetikhin crystals, J. Combin. Theory Ser. A 120 (2013), no. 2, 433–452.

    MathSciNet  Article  MATH  Google Scholar 

  37. C.-h. Lee, A proof of the KNS conjecture: D r case, J. Phys. A 46 (2013), no. 16, 165201, 12.

  38. C.-h. Lee, Linear recurrence relations in Q-systems and difference L-operators, J. Phys. A 48 (2015), no. 19, 195201.

    MathSciNet  Article  MATH  Google Scholar 

  39. C.-h. Lee, KR-quasipolynomial, https://github.com/chlee-0/KR-quasipolynomial (2017).

  40. C.-h. Lee, LinearPowerSum, https://github.com/chlee-0/LinearPowerSum (2017).

  41. C.-h. Lee, Positivity and periodicity of Q-systems in the WZW fusion ring, Adv. Math. 311 (2017), 532–568.

    MathSciNet  Article  MATH  Google Scholar 

  42. J.-R. Li, K. Naoi, Graded limits of minimal affinizations over the quantum loop algebra of type G 2, Algebr. Represent. Theory 19 (2016), no. 4, 957–973.

    MathSciNet  Article  MATH  Google Scholar 

  43. A. Moura, Restricted limits of minimal affinizations, Pacific J. Math. 244 (2010), no. 2, 359–397.

    MathSciNet  Article  MATH  Google Scholar 

  44. A. Moura, F. Pereira, Graded limits of minimal affinizations and beyond: the multiplicity free case for type E 6, Algebra Discrete Math. 12 (2011), no. 1, 69–115.

    MathSciNet  MATH  Google Scholar 

  45. W. Nahm, S. Keegan, Integrable deformations of CFTs and the discrete Hirota equations, arXiv:0905.3776v2 (2009).

  46. H. Nakajima, t-analogs of q-characters of Kirillov–Reshetikhin modules of quantum affine algebras, Represent. Theory 7 (2003), 259–274 (electronic).

  47. K. Naoi, Demazure modules and graded limits of minimal affinizations, Represent. Theory 17 (2013), 524–556.

    MathSciNet  Article  MATH  Google Scholar 

  48. K. Naoi, Graded limits of minimal affinizations in type D, SIGMA Symmetry Integrability Geom. Methods Appl. 10 (2014), Paper 047, 20.

  49. M. Okado, Simplicity and similarity of Kirillov-Reshetikhin crystals, in: Recent Developments in Algebraic and Combinatorial Aspects of Representation Theory, Contemp. Math., Vol. 602, Amer. Math. Soc., Providence, RI, 2013, pp. 183–194.

  50. M. Okado, A. Schilling, Existence of Kirillov–Reshetikhin crystals for nonexceptional types, Represent. Theory 12 (2008), 186–207.

    MathSciNet  Article  MATH  Google Scholar 

  51. T. Scrimshaw, A crystal to rigged configuration bijection and the filling map for type \( {D}_4^{(3)} \), J. Algebra 448 (2016), 294–349.

    MathSciNet  Article  MATH  Google Scholar 

  52. R. P. Stanley, Decompositions of rational convex polytopes, Ann. Discrete Math. 6 (1980), 333–342.

    MathSciNet  Article  MATH  Google Scholar 

  53. S. Verdoolaege, K. Woods, Counting with rational generating functions, J. Symbolic Comput. 43 (2008), no. 2, 75–91.

    MathSciNet  Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to CHUL-HEE LEE.

Additional information

Supported by the Australian Research Council.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

LEE, CH. LINEAR RECURRENCE RELATIONS IN Q-SYSTEMS VIA LATTICE POINTS IN POLYHEDRA. Transformation Groups 24, 429–466 (2019). https://doi.org/10.1007/s00031-018-9502-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00031-018-9502-9