Skip to main content
Log in

HIGHEST WEIGHT HARISH-CHANDRA SUPERMODULES AND THEIR GEOMETRIC REALIZATIONS

  • Published:
Transformation Groups Aims and scope Submit manuscript

Abstract

In this paper we discuss the highest weight \( {\mathfrak{k}}_r \)-finite representations of the pair (𝔤r, \( {\mathfrak{k}}_r \)) consisting of 𝔤r, a real form of a complex basic Lie superalgebra of classical type 𝔤 (𝔤 ≠ A(n, n)), and the maximal compact subalgebra \( {\mathfrak{k}}_r \) of 𝔤r,0, together with their geometric global realizations. These representations occur, as in the ordinary setting, in the superspaces of sections of holomorphic super vector bundles on the associated Hermitian superspaces Gr/Kr.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Alldridge, Fréchet globalisations of Harish-Chandra supermodules, Int. Math. Res. Not. IMRN (2017), no. 17, 5182-5232.

  2. L. Balduzzi, C. Carmeli, R. Fioresi, Quotients in supergeometry, in: Symmetry in Mathematics and Physics, Contemp. Math., Vol. 490, Amer. Math. Soc., Providence, RI, 2009, pp. 177{187.

  3. Ф. А. Березин, Д. А. Лейтес, Супермногообразия, Докл. АН СССР 224 (1975), no. 3, 505{508. Engl. transl.: F. A. Berezin, D. A. Leĭtes, Supermanifolds, Sov. Math., Dokl. 16 (1975), 1218-1222.

  4. F. A. Berezin, Introduction to Superanalysis, Mathematical Physics and Applied Mathematics, Vol. 9, D. Reidel, Dordrecht, 1987.

    Google Scholar 

  5. D. Borthwick, A. Lesniewski, M. Rinaldi, Hermitian symmetric superspaces of type IV, J. Math. Phys. 34 (1993), no. 10, 4817-4833.

    Article  MathSciNet  Google Scholar 

  6. C. P. Boyer, O. A. Sánchez-Valenzuela, Lie supergroup actions on supermanifolds, Trans. Amer. Math. Soc. 323 (1991), no. 1, 151-175.

    Article  MathSciNet  Google Scholar 

  7. C. Carmeli, G. Cassinelli, A. Toigo, V. S. Varadarajan, Unitary representations of super Lie groups and applications to the classification and multiplet structure of super particles, Comm. Math. Phys. 263 (2006), no. 1, 217-258.

    Article  MathSciNet  Google Scholar 

  8. C. Carmeli, L. Caston, R. Fioresi, Mathematical Foundations of Supersymmetry, EMS Series of Lectures in Mathematics, European Mathematical Society (EMS), Zürich, 2011.

    Book  Google Scholar 

  9. C. Carmeli, R. Fioresi, Superdistributions, analytic and algebraic super Harish-Chandra pairs, Pacific J. Math. 263 (2013), no. 1, 29-51.

    Article  MathSciNet  Google Scholar 

  10. C. Carmeli, R. Fioresi, S. Kwok, The Peter–Weyl theorem for SU(1|1), p-Adic Numbers Ultrametric Anal. Appl. 7 (2015), no. 4, 266-275.

    MathSciNet  MATH  Google Scholar 

  11. C. Carmeli, R. Fioresi, S. Kwok, SUSY structures, representations and Peter–Weyl theorem for S1|1, J. Geom. Phys. 95 (2015), 144-158.

    Article  MathSciNet  Google Scholar 

  12. M. K. Chuah, R. Fioresi, Hermitian real forms of contragredient Lie superalgebras, J. Algebra 437 (2015), 161-176.

    Article  MathSciNet  Google Scholar 

  13. P. Deligne, J. W. Morgan, Notes on supersymmetry (following Joseph Bernstein), in: Quantum Fields and Strings: a Course for Mathematicians, Vol. 1, 2 (Princeton, NJ, 1996/1997), Amer. Math. Soc., Providence, RI, 1999, pp. 41{97.

  14. В. К. Добрев, Р. Б. Жанг, Неприводимые унитарные представления положитеной энергии супералгебр 𝔬𝔰𝔭 (1|2n;ℝ) Яденая физ. 68 (2005), no. 10, 1724-1732. Engl. transl.: V. K. Dobrev, R. B. Zhang, Positive energy unitary irreducible representations of the superalgebras osp(1|2n;ℝ), Phys. Atomic Nuclei 68 (2005), no. 10, 1660-1669.

  15. V. K. Dobrev, V. B. Petkova, Group-theoretical approach to extended conformal supersymmetry: function space realization and invariant differential operators, Fortschr. Phys. 35 (1987), no. 7, 537-572.

    Article  MathSciNet  Google Scholar 

  16. R. Fioresi, Smoothness of algebraic supervarieties and supergroups, Pacific J. Math. 234 (2008), no. 2, 295-310.

    Article  MathSciNet  Google Scholar 

  17. R. Fioresi, F. Gavarini, Chevalley Supergroups, Mem. Amer. Math. Soc. 215 (2012), no. 1014.

  18. R. Fioresi, F. Gavarini, Algebraic supergroups with Lie superalgebras of classical type, J. Lie Theory 23 (2013), no. 1, 143-158.

    MathSciNet  MATH  Google Scholar 

  19. R. Fioresi, M. A. Lledó, The Minkowski and Conformal Superspaces, World Scientific Publishing, Hackensack, NJ, 2015.

    Book  Google Scholar 

  20. R. Fioresi, M. A. Lledó, V. S. Varadarajan, The Minkowski and conformal superspaces, J. Math. Phys. 48 (2007), no. 11, 113505, 27.

  21. H. Furutsu, K. Nishiyama, Classification of irreducible super-unitary representations of su(p; q|n), Comm. Math. Phys. 141 (1991), no. 3, 475-502.

    Article  MathSciNet  Google Scholar 

  22. S. Garnier, T. Wurzbacher, Integration of vector fields on smooth and holomorphic supermanifolds, Doc. Math. 18 (2013), 519-545.

    MathSciNet  MATH  Google Scholar 

  23. M. Gorelik, The Kac construction of the centre of U(𝔤) for Lie superalgebras, J. Nonlinear Math. Phys. 11 (2004), no. 3, 325-349.

    Article  MathSciNet  Google Scholar 

  24. C. Graw, On Flag Domains in the Supersymmetric Setting, PhD Dissertation, Ruhr University Bochum, arXiv:1507.04042 (2015).

  25. Harish-Chandra, Representations of a semisimple Lie group on a Banach space. I, Trans. Amer. Math. Soc. 75 (1953), 185-243.

    Article  MathSciNet  Google Scholar 

  26. Harish-Chandra, Representations of semisimple Lie groups. IV, Amer. J. Math. 77 (1955), 743-777.

    Article  MathSciNet  Google Scholar 

  27. Harish-Chandra, Representations of semisimple Lie groups. V, Amer. J. Math. 78 (1956), 1-41.

    Article  MathSciNet  Google Scholar 

  28. Harish-Chandra, Representations of semisimple Lie groups. VI. Integrable and square-integrable representations, Amer. J. Math. 78 (1956), 564-628.

    Article  MathSciNet  Google Scholar 

  29. S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces, Graduate Studies in Mathematics, Vol. 34, American Mathematical Society, Providence, RI, 2001.

    MATH  Google Scholar 

  30. H. P. Jakobsen, The full set of unitarizable highest weight modules of basic classical Lie superalgebras, Mem. Amer. Math. Soc. 111 (1994), no. 532.

  31. V. G. Kac, Lie superalgebras, Advances in Math. 26 (1977), no. 1, 8-96.

    Article  MathSciNet  Google Scholar 

  32. V. G. Kac, Laplace operators of infinite-dimensional Lie algebras and theta functions, Proc. Nat. Acad. Sci. U.S.A. 81 (1984), no. 2, Phys. Sci., 645-647.

    Article  MathSciNet  Google Scholar 

  33. V. G. Kac, Representations of classical Lie superalgebras, in: Differential geometrical Methods in Mathematical Physics, II (Proc. Conf., Univ. Bonn, Bonn, 1977), Lecture Notes in Math., Vol. 676, Springer, Berlin, 1978, pp. 597-626.

  34. A. W. Knapp, Lie Groups Beyond an Introduction, 2nd ed., Progress in Mathematics, Vol. 140, Birkhäuser Boston, Boston, MA, 2002.

    Google Scholar 

  35. I. Kolár, P. W. Michor, J. Slovák, Natural Operations in Differential Geometry, Springer-Verlag, Berlin, 1993.

    Book  Google Scholar 

  36. B. Kostant, Graded manifolds, graded Lie theory, and prequantization, Lecture Notes in Math., Vol. 570 (1977), 177-306.

    Article  MathSciNet  Google Scholar 

  37. J.-L. Koszul, Graded manifolds and graded Lie algebras, in: Proceedings of the International Meeting on Geometry and Physics (Florence, 1982), Pitagora, Bologna, 1983, pp. 71-84.

    Google Scholar 

  38. Д. А. Лейтес, Введение в теорию супермогообразий, УМН 35 (1980), вьш. 1(211), 3-57. Engl. transl.: D. A. Leĭtes, Introduction to the theory of supermani-folds, Russian Math. Surveys 35 (1980), no. 1, 1-64.

  39. Y. I. Manin, Gauge Field Theory and Complex Geometry, 2nd ed., Grundlehren der Mathematischen Wissenschaften, Vol. 289, Springer-Verlag, Berlin, 1997.

    Book  Google Scholar 

  40. I. M. Musson, Lie Superalgebras and Enveloping Algebras, Graduate Studies in Mathematics, Vol. 131, American Mathematical Society, Providence, RI, 2012.

    Book  Google Scholar 

  41. K.-H. Neeb, H. Salmasian, Differentiable vectors and unitary representations of Fréchet-Lie supergroups, Math. Z. 275 (2013), no. 1-2, 419-451.

    Article  MathSciNet  Google Scholar 

  42. M. Parker, Classification of real simple Lie superalgebras of classical type, J. Math. Phys. 21 (1980), no. 4, 689-697.

    Article  MathSciNet  Google Scholar 

  43. В. В. Серганова, Классификация простых вещественных супералгебр Ли и симметрических суперпространств, Функц. анализ и его прил. 17 (1983), vyp. 3, 46-54. Engl. transl.: V. V. Serganova, Classification of simple real Lie superalgebras and symmetric superspaces, Funct. Anal. Appl. 17 (1983), no. 3, 200-207.

  44. V. S. Varadarajan, Harmonic Analysis on Real Reductive Groups, Lecture Notes in Mathematics, Vol. 576, Springer-Verlag, Berlin, 1977.

    Book  Google Scholar 

  45. V. S. Varadarajan,Lie Groups, Lie Algebras, and their Representations, Graduate Texts in Mathematics, Vol. 102, Springer-Verlag, New York, 1984.

    Book  Google Scholar 

  46. V. S. Varadarajan, Supersymmetry for Mathematicians: an Introduction, Courant Lecture Notes in Mathematics, Vol. 11, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 2004.

    Google Scholar 

  47. E. G. Vishnyakova, On complex Lie supergroups and split homogeneous supermani-folds, Transform. Groups 16 (2011), no. 1, 265-285.

    Article  MathSciNet  Google Scholar 

  48. G. Warner, Harmonic Analysis on Semi-simple Lie Groups. I, Springer-Verlag, New York-Heidelberg, 1972.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. CARMELI.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

CARMELI, C., FIORESI, R. & VARADARAJAN, V.S. HIGHEST WEIGHT HARISH-CHANDRA SUPERMODULES AND THEIR GEOMETRIC REALIZATIONS. Transformation Groups 25, 33–80 (2020). https://doi.org/10.1007/s00031-018-9499-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00031-018-9499-0

Navigation