Skip to main content
Log in

ON ABSTRACT HOMOMORPHISMS OF CHEVALLEY GROUPS OVER THE COORDINATE RINGS OF AFFINE CURVES

  • Published:
Transformation Groups Aims and scope Submit manuscript

Abstract

The goal of this paper is to establish a general rigidity statement for abstract representations of elementary subgroups of Chevalley groups of rank ≥ 2 over a class of commutative rings that includes the localizations of 1-generated rings and the coordinate rings of affine curves. Our main result implies, for example, that any finite-dimensional representation of SLn(ℤ[X]) (n ≥ 3) over an algebraically closed field of characteristic zero has a standard description, yielding thereby the first unconditional rigidity statement for finitely generated linear groups other than arithmetic groups/lattices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. F. Atiyah, I. G. MacDonald, Introduction to Commutative Algebra, Westview Press, 1969.

  2. H. Bass, J. Milnor, J.-P. Serre, Solution of the congruence subgroup problem for SLn(n ≥ 3) and Sp2n(n ≥ 2), Publ. Math. Inst. Hautes Etud. Sci. 33 (1967), 59–137.

    Article  Google Scholar 

  3. A. Borel, Linear Algebraic Groups, 2nd ed., Graduate Texts in Mathematics, Vol. 126, Springer, New York, 1991.

    Book  Google Scholar 

  4. S. Bosch, Algebraic Geometry and Commutative Algebra, Universitext, Springer-Verlag, London, 2013.

    Book  Google Scholar 

  5. B. Conrad, O. Gabber, G. Prasad, Pseudo-reductive Groups, 2nd ed., New Mathematical Monographs, Vol. 26, Cambridge University Press, Cambridge, 2015.

  6. M. Ershov, A. Jaikin-Zapirain, M. Kassabov, Property (T) for groups graded by root systems, Mem. Amer. Math. Soc. 249 (2017), no. 1186.

  7. D. Fisher, Groups acting on manifolds: around the Zimmer program, in: Geometry, Rigidity, and Group Actions, Chicago Lectures in Math., Univ. Chicago Press, Chicago, IL, 2011, pp. 72–157.

  8. M. Kassabov, N. Nikolov, Universal lattices and property tau, Invent. Math. 165 (2006), 209–224.

    Article  MathSciNet  Google Scholar 

  9. G. A. Margulis, Discrete Subgroups of Semisimple Lie Groups, Springer, New York, 1991.

    Book  Google Scholar 

  10. H. Matsumoto, Subgroups of finite index in certain arithmetic groups, Proc. Sympos. Pure Math., AMS 9 (1966), 99–103.

    Article  MathSciNet  Google Scholar 

  11. H. Matsumoto, Sur les sous-groupes arithmétiques des groupes semi-simples déployés, Ann. Sci. École Norm. Sup. (4) 2 (1969), 1–62.

    Article  MathSciNet  Google Scholar 

  12. J. Milne, Algebraic Groups: The Theory of Group Schemes of Finite Type over a Field, available at http://www.jmilne.org/math/CourseNotes/iAG200.pdf.

  13. J. Milnor, Introduction to Algebraic K-Theory, Annals of Mathematics Studies, No. 72, Princeton University Press, Princeton, N.J., University of Tokyo Press, Tokyo, 1971.

  14. R. S. Pierce, Associative Algebras, Graduate Texts in Mathematics, Vol. 88, Studies in the History of Modern Science, Vol. 9, Springer-Verlag, New York, 1982.

    Book  Google Scholar 

  15. A. S. Rapinchuk, I. A. Rapinchuk, Centrality of the congruence kernel for elementary subgroups of Chevalley groups of rank > 1 over noetherian rings, Proc. Amer. Math. Soc. 139 (2011), no. 9, 3099–3113.

    Article  MathSciNet  Google Scholar 

  16. I. A. Rapinchuk, On linear representations of Chevalley groups over commutative rings, Proc. Lond. Math. Soc. (3) 102 (2011), no. 5, 951–983.

    Article  MathSciNet  Google Scholar 

  17. I. A. Rapinchuk, On abstract representations of the groups of rational points of algebraic groups and their deformations, Algebra & Number Theory 7 (2013), no. 7, 1685–1723.

    Article  MathSciNet  Google Scholar 

  18. Y. Shalom, Bounded generation and Kazhdan's property (T), Publ. Math. IHES 90 (1999), 145–168.

    Article  MathSciNet  Google Scholar 

  19. D. Shenfeld, On semisimple representations of universal lattices, Groups Geom. Dyn. 4 (2010), no. 1, 179–193.

    Article  MathSciNet  Google Scholar 

  20. Stacks Project, available at http://stacks.math.columbia.edu/.

  21. M. R. Stein Generators, relations, and coverings of Chevalley groups over commutative rings, Amer. J. Math. 93 (1971), no. 4, 965–1004.

    Article  MathSciNet  Google Scholar 

  22. M. R. Stein Surjective Stability in dimension 0 for K 2and related functors, Trans. Amer. Math. Soc. 178 (1973), 165–191.

    MathSciNet  MATH  Google Scholar 

  23. R. Steinberg, Lectures on Chevalley Groups, mimeographed lectures notes, Yale University Math. Dept., New Haven, CT, 1968.

  24. А. А. Суслин, О структуре специальной линейной группы над кольцами многочленов, Изв. АН СССР, сер. матем. 41 (1977), вып. 2, 235–252. English transl.: A. A. Suslin, On the structure of the special linear group over polynomial rings, Math. USSR-Izv. 11 (1977), no. 2, 221–238.

  25. W. van der Kallen, The K 2of rings with many units, Ann. Sci. École Norm. Sup. (4) 10 (1977), no. 4, 473–515.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to IGOR A. RAPINCHUK.

Additional information

To Gregory A. Margulis on his 70th birthday

Partially supported by an AMS-Simons Travel Grant.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

RAPINCHUK, I.A. ON ABSTRACT HOMOMORPHISMS OF CHEVALLEY GROUPS OVER THE COORDINATE RINGS OF AFFINE CURVES. Transformation Groups 24, 1241–1259 (2019). https://doi.org/10.1007/s00031-018-9494-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00031-018-9494-5

Navigation