Skip to main content
Log in

RELATING TENSOR STRUCTURES ON REPRESENTATIONS OF GENERAL LINEAR AND SYMMETRIC GROUPS

  • Published:
Transformation Groups Aims and scope Submit manuscript

Abstract

For polynomial representations of GL n of a fixed degree, H. Krause defined a new “internal tensor product” using the language of strict polynomial functors. We show that over an arbitrary commutative base ring k, the Schur functor carries this internal tensor product to the usual Kronecker tensor product of symmetric group representations. This is true even at the level of derived categories. The new tensor product is a substantial enrichment of the Kronecker tensor product. E.g., in modular representation theory it brings in homological phenomena not visible on the symmetric group side. We calculate the internal tensor product over any commutative ring k in several interesting cases involving classical functors and the Weyl functors. We show an application to the Kronecker problem in characteristic zero when one partition has two rows or is a hook.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Akin, D. A. Buchsbaum, Characteristic-free representation theory of the general linear group, Adv. in Math. 58 (1985), no. 2, 149–200.

    Article  MathSciNet  MATH  Google Scholar 

  2. K. Akin, D. A. Buchsbaum, Characteristic-free representation theory of the general linear group. II. Homological considerations, Adv. in Math. 72 (1988), no. 2, 171–210.

    Article  MathSciNet  MATH  Google Scholar 

  3. K. Akin, D. A. Buchsbaum, J. Weyman, Schur functors and Schur complexes, Adv. in Math. 44 (1982), no. 3, 207–278.

    Article  MathSciNet  MATH  Google Scholar 

  4. C. Aquilino, R. Reischuk, The monoidal structure on strict polynomial functors, J. Algebra 485 (2017), 213–229, arXiv:1503.05108 (2015).

    Article  MathSciNet  MATH  Google Scholar 

  5. J. Axtell, Spin polynomial functors and representations of Schur superalgebras, Represent. Theory 17 (2013), 584–609.

    Article  MathSciNet  MATH  Google Scholar 

  6. M. Bökstedt, A. Neeman, Homotopy limits in triangulated categories, Compositio Math. 86 (1993), no. 2, 209–234.

    MathSciNet  MATH  Google Scholar 

  7. G. Boffi, Characteristic-free decomposition of skew Schur functors, J. Algebra 125 (1989), no. 2, 288–297.

    Article  MathSciNet  MATH  Google Scholar 

  8. A. K. Bousfield, Homogeneous functors and their derived functors, Brandeis University, 1967.

  9. M. Chałupnik, Extensions of strict polynomial functors, Ann. Sci. École Norm. Sup. (4), 38 (2005), no. 5, 773–792.

  10. M. Chałupnik, Koszul duality and extensions of exponential functors, Adv. Math. 218 (2008), no. 3, 969–982.

    Article  MathSciNet  MATH  Google Scholar 

  11. S. R. Doty, K. Erdmann, D. K. Nakano, Extensions of modules over Schur algebras, symmetric groups and Hecke algebras, Algebr. Represent. Theory 7 (2004), no. 1, 67–100.

    Article  MathSciNet  MATH  Google Scholar 

  12. V. Franjou, T. Pirashvili, Strict polynomial functors and coherent functors, Manuscripta Math. 127 (2008), no. 1, 23–53.

    Article  MathSciNet  MATH  Google Scholar 

  13. E. M. Friedlander, A. Suslin, Cohomology of finite group schemes over a field, Invent. Math. 127 (1997), no. 2, 209–270.

    Article  MathSciNet  MATH  Google Scholar 

  14. J. A. Green, Polynomial Representations of GL n , Lecture Notes in Mathematics, Vol. 830, Springer-Verlag, Berlin, 1980.

  15. J. C. Jantzen, Representations of Algebraic Groups, 2nd ed., Mathematical Surveys and Monographs, Vol. 107, American Mathematical Society, Providence, RI, 2003.

  16. F. M. Kouwenhoven, Schur and Weyl functors, Adv. Math. 90 (1991), no. 1, 77–113.

    Article  MathSciNet  MATH  Google Scholar 

  17. H. Krause, Koszul, Ringel and Serre duality for strict polynomial functors, Compositio Math. 149 (2013), no. 6, 996–1018.

    Article  MathSciNet  MATH  Google Scholar 

  18. M. Kashiwara, P. Schapira, Categories and Sheaves, Grundlehren der Mathematischen Wissenschaften Bd. 332, Springer-Verlag, Berlin, 2006.

  19. N. J. Kuhn, Generic representations of the finite general linear groups and the Steenrod algebra I, Amer. J. Math. 116 (1994), no. 2, 327–360.

    Article  MathSciNet  MATH  Google Scholar 

  20. I. G. Macdonald, Symmetric Functions and Hall Polynomials, 2nd ed., Oxford Classic Texts in the Physical Sciences, Clarendon Press, Oxford University Press, New York, 2015.

  21. S. Mac Lane, Categories for the working mathematician, 2nd ed., Graduate Texts in Mathematics, Vol. 5, Springer-Verlag, New York, 1998.

  22. T. Pirashvili, Introduction to functor homology, in: Rational Representations, the Steenrod Algebra and Functor Homology, Panor. Synthèses, Vol. 16, Soc. Math. France, Paris, 2003, pp. 1–26.

  23. R. Reischuk, The adjoints of the Schur functor, arXiv:1601.03513 (2016).

  24. N. Spaltenstein, Resolutions of unbounded complexes, Compositio Math. 65 (1988), no. 2, 121–154.

    MathSciNet  MATH  Google Scholar 

  25. A. Touzé, Ringel duality and derivatives of non-additive functors, J. Pure Appl. Algebra 217 (2013), no. 9, 1642–1673.

    Article  MathSciNet  MATH  Google Scholar 

  26. A. Touzé, Bar complexes and extensions of classical exponential functors, Ann. Inst. Fourier (Grenoble) 64 (2014), no. 6, 2563–2637.

    Article  MathSciNet  MATH  Google Scholar 

  27. A. Touzé, Connectedness of cup products of polynomial representation of GL n and applications, arXiv:1508.06049 (2015).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to UPENDRA KULKARNI.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

KULKARNI, U., SRIVASTAVA, S. & SUBRAHMANYAM, K.V. RELATING TENSOR STRUCTURES ON REPRESENTATIONS OF GENERAL LINEAR AND SYMMETRIC GROUPS. Transformation Groups 23, 437–461 (2018). https://doi.org/10.1007/s00031-018-9481-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00031-018-9481-x

Navigation