Skip to main content
Log in

GEODESIC ORBIT METRICS IN COMPACT HOMOGENEOUS MANIFOLDS WITH EQUIVALENT ISOTROPY SUBMODULES

  • Published:
Transformation Groups Aims and scope Submit manuscript

Abstract

A geodesic orbit manifold (GO manifold) is a Riemannian manifold (M, g) with the property that any geodesic in M is an orbit of a one-parameter subgroup of a group G of isometries of (M, g). The metric g is then called a G-GO metric in M. For an arbitrary compact homogeneous manifold M = G/H, we simplify the general problem of determining the G-GO metrics in M. In particular, if the isotropy representation of H induces equivalent irreducible submodules in the tangent space of M, we obtain algebraic conditions, under which, any G-GO metric in M admits a reduced form. As an application we determine the U(n)-GO metrics in the complex Stiefel manifolds V k n.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Alekseevsky, A. Arvanitoyeorgos, Riemannian flag manifolds with homogeneous geodesics, Trans. Amer. Math. Soc. 359 (2007), no. 8, 3769–3789.

    Article  MathSciNet  Google Scholar 

  2. D. V. Alekseevsky, Y. G. Nikonorov, Compact Riemannian manifolds with homogeneous geodesics, SIGMA: Symmetry Integrability Geom. Methods Appl. 093 (2009), no. 5, 16 pp.

  3. A. Arvanitoyeorgos, An Introduction to Lie Groups and the Geometry of Homogeneous Spaces, Student Mathematical Library, Vol. 22, American Mathematical Society, Providence, 1999.

    Google Scholar 

  4. V. N. Berestovskii, Y. G. Nikonorov, On δ-homogeneous Riemannian manifolds, Differential Geom. Appl. 26 (2008), no. 5, 514–535.

    Article  MathSciNet  Google Scholar 

  5. V. N. Berestovskii, Y. G. Nikonorov, Clifford-Wolf homogeneous Riemannian manifolds, J. Differential Geom. 82 (2009), no. 3, 467–500.

    Article  MathSciNet  Google Scholar 

  6. J. Berndt, O. Kowalski, L. Vanhecke, Geodesics in weakly symmetric spaces, Ann. Global Anal. Geom. 15 (1997), 153–156.

    Article  MathSciNet  Google Scholar 

  7. M. Berger, Les variétés Riemanniennes homogènes normales simplement connexes à courbure strictement positive, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 15 (1961), no. 3, 179–246.

    MATH  Google Scholar 

  8. G. Calvaruso, R. A. Marinosci, Homogeneous geodesics of three-dimensional unimodular Lorentzian Lie groups, Mediterranean J. Math. 3 (2006), 467–481.

    Article  MathSciNet  Google Scholar 

  9. J. E. D’Atri, W. Ziller, Naturally Reductive Metrics and Einstein Metrics on Compact Lie Groups, Memoirs Amer. Math. Soc. 19 (1979), no. 215.

  10. Z. Dušek, Survey on homogeneous geodesics, Note di Mat. 1 (2008), 147–168.

    MathSciNet  MATH  Google Scholar 

  11. C. S. Gordon, Homogeneous Riemannian manifolds whose geodesics are orbits, in: Topics in Geometry: In Memory of Joseph D’Atri, Progress in Nonlinear Differential Equations, Vol. 20, Birkhäuser-Verlag, Boston, Basel, Berlin, 1996, pp. 155–174.

    Chapter  Google Scholar 

  12. Э.Б. Винберг, А. Л. Онищик, Основы теории групп Ли, В. В. Горбацевич, А. Л. Онищик, Группы Ли преобразований, в томе Группы Ли и алгебры Ли-I, Итоги науки и техн., Совр. пробл. матем., фунд. направл., т. 20, ВИНИТИ, М., 1988, стр. 7–101, 103–244. Engl. transl.: A. L. Onishchik, E. B. Vinberg, Foundations of Lie theory, V. V. Gorbatsevich, A. L. Onishchik, Lie transformation groups, in: Lie Groups and Lie Algebra I, Encyclopaedia of Mathematical Sciences, Vol. 20, Springer-Verlag, Berlin, 2001, pp. 4–94 and pp. 99-229.

  13. W. Y. Hsiang, J. C. Su, On the classification of transitive effective actions on Stiefel manifolds, Trans. Amer. Math. Soc. 130, (1968), no. 2, 322–336.

    Article  MathSciNet  Google Scholar 

  14. S. Kobayashi, K. Nomizu, Foundations of Differential Geometry, Vol. II, Wiley (Interscience), New York, 1969.

  15. O. Kowalski, L. Vanhecke, A generalization of a theorem on naturally reductive homogeneous spaces, Proc. Amer. Math. Soc. 91 (1984), 433–435.

    Article  MathSciNet  Google Scholar 

  16. O. Kowalski, L. Vanhecke, Riemannian manifolds with homogeneous geodesics, Un. Mat. Ital. B. 7 (1991), no. 5, 189–246.

    MathSciNet  MATH  Google Scholar 

  17. J. Milnor, Curvatures of left invariant metrics on Lie groups, Adv. in Math. 21 (1976), 293–329.

    Article  MathSciNet  Google Scholar 

  18. Y. G. Nikonorov, Geodesic orbit Riemannian metrics on spheres, Vladikavkaz. Mat. Zh. 15 (2013), no. 3, 67–76.

    MATH  Google Scholar 

  19. H. Tamaru, Riemannian g.o. spaces fibered over irreducible symmetric spaces, Osaka J. Math. 36 (1999), 835–851.

  20. J. A. Wolf, Harmonic Analysis on Commutative Spaces, Mathematical Surveys and Monographs, Vol. 142, American Mathematical Society, Providence, RI, 2007.

  21. О. Я. Якимова, Слабо симметрические римановы мкногообразия, итеющие редуктивную группу изометрий, Матем. сб. 195 (2004), мер. 4, 143–160. Engl. transl.: O. S. Yakimova, Weakly symmetric Riemannian manifolds with reductive isometry group, Sb. Math. 195 (2004), no. 4, 599–614.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to NIKOLAOS PANAGIOTIS SOURIS.

Additional information

To Spyridoula

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

SOURIS, N. GEODESIC ORBIT METRICS IN COMPACT HOMOGENEOUS MANIFOLDS WITH EQUIVALENT ISOTROPY SUBMODULES. Transformation Groups 23, 1149–1165 (2018). https://doi.org/10.1007/s00031-017-9464-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00031-017-9464-3

Navigation