Skip to main content
Log in

C *-DYNAMICAL SYSTEMS OF SOLVABLE LIE GROUPS

  • Published:
Transformation Groups Aims and scope Submit manuscript

Abstract

In this paper we develop a groupoid approach to some basic topological properties of dual spaces of solvable Lie groups using suitable dynamical systems related to the coadjoint action. One of our main results is that the coadjoint dynamical system of any exponential solvable Lie group is a piecewise pullback of group bundles. Our dynamical system approach to solvable Lie groups also allows us to construct some new examples of connected solvable Lie groups whose C *-algebras admit faithful irreducible representations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. V. Alekseevsky, A. M. Perelomov, Poisson and symplectic structures on Lie algebras, J. Geom. Phys. 22 (3) (1997), 191–211.

    Article  MathSciNet  MATH  Google Scholar 

  2. R. J. Archbold, D. W. B. Somerset, Multiplier algebras of C 0(X)-algebras Münster J. Math. 4 (2011), 73–100.

  3. D. Arnal, B. Currey, B. Dali, Construction of canonical coordinates for exponential Lie groups, Trans. Amer. Math. Soc. 361 (2009), no. 12, 6283–6348.

    Article  MathSciNet  MATH  Google Scholar 

  4. I. Beltiţă, D. Beltiţă, On C * -algebras of exponential solvable Lie groups and their real ranks, J. Math. Anal. Appl. 437 (2016), no. 1, 51–58.

    Article  MathSciNet  MATH  Google Scholar 

  5. I. Beltiţă, D. Beltiţă, Representations of nilpotent Lie groups via measurable dynamical systems, in: Geometric Methods in Physics, P. Kielanowski, S. T. Ali, P. Bieliavsky, A. Odzijewicz, M. Schlichenmaier, T. Voronov, eds., Birkhäuser, Basel, 2016, pp. 79–88.

  6. I. Beltiţă, D. Beltiţă, J. Ludwig, Fourier transforms of C * -algebras of nilpotent Lie groups, Int. Math. Res. Not. IMRN (2017), no. 3, 677–714.

  7. J. Brown, L. O. Clark, C. Farthing, A. Sims, Simplicity of algebras associated to étale groupoids, Semigroup Forum 88 (2014), no. 2, 433–452.

    MathSciNet  MATH  Google Scholar 

  8. M. Buneci, Isomorphism for transitive groupoid C * -algebras, in: Proceedings of CAIM 2003, Vol. 1, Editura Univ. Oradea, 2003, pp. 42–46.

  9. L. O. Clark, CCR and GCR groupoid C * -algebras, Indiana Univ. Math. J. 56 (2007), no. 5, 2087–2110.

    Article  MathSciNet  MATH  Google Scholar 

  10. L. O. Clark, A. an Huef, I. Raeburn, The equivalence relations of local homeo-morphisms and Fell algebras, New York J. Math. 19 (2013), 367–394.

  11. L. J. Corwin, F. P. Greenleaf, Representations of Nilpotent Lie Groups and Their Applications, Part I, Cambridge Studies in Adv. Math., Vol. 18, Cambridge Univ. Press, Cambridge, 1990.

  12. B. N. Currey, The structure of the space of coadjoint orbits of an exponential solvable Lie group, Trans. Amer. Math. Soc. 332 (1992), no. 1, 241–269.

    Article  MathSciNet  MATH  Google Scholar 

  13. B. N. Currey, R. C. Penney, The structure of the space of co-adjoint orbits of a completely solvable Lie group, Michigan Math. J. 36 (1989), no. 2, 309–320.

    Article  MathSciNet  MATH  Google Scholar 

  14. J. Dixmier, L'application exponentielle dans les groupes de Lie résolubles, Bull. Soc. Math. France 85 (1957), 113–121.

    Article  MathSciNet  MATH  Google Scholar 

  15. J. Dixmier, Les C * -algèbres et Leurs Représentations, Cahiers Scientifiques, Fasc. XXIX Gauthier-Villars & Cie, Éditeur-Imprimeur, Paris, 1964.

  16. M. Duo, M. Vergne, Une propriété de la représentation coadjointe d'une algèbre de Lie, C. R. Acad. Sci. Paris Sér. A–B 268 (1969), A583–A585.

  17. P. Eymard, M. Terp, La transformation de Fourier et son inverse sur le groupe des ax+b d'un corps local, in: Analyse Harmonique sur les Groupes de Lie, II, P. Eymard, J. Faraut, G. Schiffmann, R. Takahashi, eds., Lecture Notes in Math., Vol. 739, Springer, Berlin, 1979, pp. 207–248.

  18. J. M. G. Fell, Weak containment and induced representations of groups. II, Trans. Amer. Math. Soc. 110 (1964), 424–447.

    MathSciNet  MATH  Google Scholar 

  19. H. Fujiwara, J. Ludwig, Harmonic Analysis on Exponential Solvable Lie Groups, Springer Monographs in Mathematics, Springer, Tokyo, 2015.

  20. J. Glimm, Families of induced representations, Pacific J. Math. 12 (1962), 885–911.

    Article  MathSciNet  MATH  Google Scholar 

  21. G. Goehle, The Mackey machine for crossed products by regular groupoids. I, Houston J. Math. 36 (2010), no. 2, 567–590.

    MathSciNet  MATH  Google Scholar 

  22. G. Goehle, The Mackey machine for crossed products by regular groupoids. II, Rocky Mountain J. Math. 42 (2012), no. 3, 873–900.

    Article  MathSciNet  MATH  Google Scholar 

  23. G. Hochschild, The automorphism group of a Lie group, Trans. Amer. Math. Soc. 72 (1952), 209–216.

    MathSciNet  MATH  Google Scholar 

  24. D. Husemoller, Fibre Bundles, 3rd ed., Graduate Texts in Mathematics, Vol. 20, Springer-Verlag, New York, 1994.

  25. J. Inoue, Holomorphically induced representations of some solvable Lie groups, J. Funct. Anal. 186 (2001), no. 2, 269–328.

  26. M. Ionescu, D. P. Williams, Irreducible representations of groupoid C * -algebras, Proc. Amer. Math. Soc. 137 (2009), no. 4, 1323–1332.

    Article  MathSciNet  MATH  Google Scholar 

  27. M. Khoshkam, G. Skandalis, Regular representation of groupoid C * -algebras and applications to inverse semigroups, J. reine angew. Math. 546 (2002), 47–72.

  28. B. Kostant, Coadjoint structure of Borel subgroups and their nilradicals, arXiv:1205.2362 (2012).

  29. A. W. Knapp, Lie Groups Beyond an Introduction, 2nd ed., Progress in Mathematics, Vol. 140, Birkhäuser Boston, Boston, MA, 2002.

  30. H. Leptin, J. Ludwig, Unitary Representation Theory of Exponential Lie Groups, de Gruyter Expositions in Mathematics, Vol. 18, Walter de Gruyter, Berlin, 1994.

  31. J. Mrčun, Stability and Invariants of HilsumSkandalis Maps, PhD thesis, Utrecht University, 1996, arXiv:math/0506484 (2005).

  32. P. S. Muhly, D. P. Williams, Continuous trace groupoid C * -algebras, Math. Scand. 66 (1990), no. 2, 231–241.

    Article  MathSciNet  MATH  Google Scholar 

  33. G. J. Murphy, Primitivity conditions for full group C * -algebras, Bull. London Math. Soc. 35 (2003), no. 5, 697–705.

    Article  MathSciNet  MATH  Google Scholar 

  34. P. S. Muhly, J. N. Renault, D. P. Williams, Equivalence and isomorphism for groupoid C * -algebras, J. Operator Theory 17 (1987), no. 1, 3–22.

    MathSciNet  MATH  Google Scholar 

  35. P. S. Muhly, J. N. Renault, D. P. Williams, Continuous-trace groupoid C * -algebras. III, Trans. Amer. Math. Soc. 348 (1996), no. 9, 3621–3641.

    Article  MathSciNet  MATH  Google Scholar 

  36. P. S. Muhly, D. P. Williams, Groupoid cohomology and the Dixmier-Douady class, Proc. London Math. Soc. (3) 71 (1995), no. 1, 109–134.

  37. A. I. Ooms, On Lie algebras having a primitive universal enveloping algebra, J. Algebra 32 (1974), no. 3, 488–500.

    Article  MathSciNet  MATH  Google Scholar 

  38. T. A. Omland, Primeness and primitivity conditions for twisted group C * -algebras, Math. Scand. 114 (2014), no. 2, 299–319.

    Article  MathSciNet  MATH  Google Scholar 

  39. A. L. T. Paterson, Amenability, Mathematical Surveys and Monographs, Vol. 29, American Mathematical Society, Providence, RI, 1988.

  40. L. Pukánszky, Characters of algebraic solvable groups, J. Funct. Anal. 3 (1969), 435–494.

    Article  MathSciNet  MATH  Google Scholar 

  41. I. Raeburn, D. P. Williams, Pull-backs of C * -algebras and crossed products by certain diagonal actions, Trans. Amer. Math. Soc. 287 (1985), no. 2, 755–777.

    MathSciNet  MATH  Google Scholar 

  42. A. Ramsay, The MackeyGlimm dichotomy for foliations and other Polish groupoids, J. Funct. Anal. 94 (1990), no. 2, 358–374.

    Article  MathSciNet  MATH  Google Scholar 

  43. S. Raum, C * -simplicity of locally compact Powers groups, J. reine angew. Math., https://doi.org/10.1515/crelle-2016-0026 (2016).

  44. J. Renault, A Groupoid Approach to C * -algebras, Lecture Notes in Mathematics, Vol. 793. Springer, Berlin, 1980.

  45. J. Renault, The ideal structure of groupoid crossed product C * -algebras, with an appendix by G. Skandalis, J. Operator Theory 25 (1991), no. 1, 3–36.

  46. R. Richardson, On the variation of isotropy subalgebras, in: Proceedings of the Conference on Transformation Groups, P. Mostert, ed., Springer, New York, 1968, pp. 429–440.

  47. J. Rosenberg, The C * -algebras of some real and p-adic solvable groups, Pacific J. Math. 65 (1976), no. 1, 175–192.

  48. H. Rossi, M. Vergne, Equations de CauchyRiemann tangentielles associées á un domaine de Siegel, Ann. Sci. Ecole Norm. Sup. (4) 9 (1976), no. 1, 31–80.

  49. A. Sims, D. P. Williams, Amenability for Fell bundles over groupoids, Illinois J. Math. 57 (2013), no. 2, 429–444.

    MathSciNet  MATH  Google Scholar 

  50. N. E. Wegge-Olsen, K-theory and C * -algebras, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1993.

  51. D. P. Williams, Crossed Products of C * -algebras, Mathematical Surveys and Monographs, Vol. 134, American Mathematical Society, Providence, RI, 2007.

  52. D. P. Williams, Haar systems on equivalent groupoids, Proc. Amer. Math. Soc. Ser. B 3 (2016), 1–8.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to DANIEL BELTIŢĂ.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

BELTIŢĂ, I., BELTIŢĂ, D. C *-DYNAMICAL SYSTEMS OF SOLVABLE LIE GROUPS. Transformation Groups 23, 589–629 (2018). https://doi.org/10.1007/s00031-017-9449-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00031-017-9449-2

Navigation