Skip to main content
Log in

BOUNDS FOR ARITHMETIC HYPERBOLIC REFLECTION GROUPS IN DIMENSION 2

  • Published:
Transformation Groups Aims and scope Submit manuscript

Abstract

The work of Nikulin and Agol, Belolipetsky, Storm, and Whyte shows that only finitely many number fields may serve as the field of definition of an arithmetic hyperbolic reflection group. An important problem posed by Nikulin is to enumerate these fields and their degrees. In this paper we prove that in dimension 2 the degree of these fields is at most 7. More generally we prove that the degree of the field of definition of the quaternion algebra associated to an arithmetic Fuchsian group of genus 0 is at most 7, confirming a conjecture of Long, Maclachlan and Reid. We also obtain upper bounds for the discriminants of these fields of definition, allowing for an enumeration which should be useful for the classification of arithmetic hyperbolic reflection groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Agol, Finiteness of arithmetic Kleinian reflection groups, in: International Congress of Mathematicians, Vol. II, Eur. Math. Soc., Zürich, 2006, pp. 951–960.

  2. I. Agol, M. Belolipetsky, P. Storm, K. Whyte, Finiteness of arithmetic hyperbolic reflection groups, Groups Geom. Dyn. 2 (2008), 481–498.

    Article  MathSciNet  MATH  Google Scholar 

  3. D. Allcock, The Reflective Lorentzian Lattices of Rank 3, Mem. Amer. Math. Soc., Vol. 220, no. 1033, 2012.

  4. J. V. Armitage, A. Fröhlich, Classnumbers and unit signatures, Mathematika 14 (1967), 94–98.

    Article  MathSciNet  MATH  Google Scholar 

  5. M. Belolipetsky, Finiteness theorems for congruence reflection groups, Transform. Groups 16 (2011), no. 4, 939–954.

    Article  MathSciNet  MATH  Google Scholar 

  6. M. Belolipetsky, On fields of definition of arithmetic Kleinian reflection groups, Proc. Amer. Math. Soc. 137 (2009), 1035–1038.

    Article  MathSciNet  MATH  Google Scholar 

  7. M. Belolipetsky, B. Linowitz, On fields of definition of arithmetic Kleinian refection groups II, Int. Math. Res. Not. IMRN 9 (2014), 2559–2571.

    Article  MATH  Google Scholar 

  8. M. Belolipetsky, Arithmetic hyperbolic reflection groups, Bull. Amer. Math. Soc. (N.S.) 53 (2016), no. 3, 437–475.

  9. V. Blomer, F. Brumley, On the Ramanujan conjecture over number fields, Ann. of Math. (2) 174 (2011), no. 1, 581–605.

  10. A. Borel, Commensurability classes and volumes of hyperbolic 3-manifolds, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 8 (1981), 1–33.

  11. W. Bosma, J. Cannon, C. Playoust, The Magma algebra system, I. The user language, J. Symbolic Comput. 24 (1997), no. 3–4, 235–265.

    Article  MathSciNet  MATH  Google Scholar 

  12. S. Brueggeman, D. Doud, Local corrections of discriminant bounds and small degree extensions of quadratic base fields, Int. J. Number Theory 4 (2008), no. 3, 349–361.

    Article  MathSciNet  MATH  Google Scholar 

  13. S. Brueggeman, D. Doud, Supplementary tables and computer code, http://math.byu.edu/~doud/DiscBound.html.

  14. B. Linowitz, J. Voight, Small isospectral and nonisometric orbifolds of dimension 2 and 3, Math. Z. 281 (2015), no. 1–2, 523–569.

    Article  MathSciNet  MATH  Google Scholar 

  15. T. LMFDB Collaboration, The l-functions and modular forms database, 2013, http://www.lmfdb.org.

  16. D. Long, C. Maclachlan, A. Reid, Arithmetic Fuchsian groups of genus zero, Pure Appl. Math. Q. 2 (2006), no. 2, 569–599.

    Article  MathSciNet  MATH  Google Scholar 

  17. C. Maclachlan, Bounds for discrete hyperbolic arithmetic reflection groups in dimension 2, Bull. Lond. Math. Soc. 43 (2011), 111–123.

    Article  MathSciNet  MATH  Google Scholar 

  18. C. Maclachlan, A. W. Reid, The Arithmetic of Hyperbolic 3-Manifolds, Graduate Texts in Mathematics, Vol. 219, Springer-Verlag, New York, 2003.

  19. A. Mark, The Classification of Rank 3 Reflective Hyperbolic Lattices over \( \mathbb{Z}\left[\sqrt{2}\right] \), PhD thesis, University of Texas at Austin, 2015.

  20. В. В. Никулин, О классификации арифметических групп, порождённых отражениями в пространствах Лобачевского, Изв. АН СССР. Сер. матем. 45 (1981), вьш. 1, 113–142. Engl. transl.: V. V. Nikulin, On the classification of arithmetic groups generated by reflections in Lobachevsky spaces, Math. USSR-Izvestiya 18 (1982), no. 1, 99–123.

  21. V. V. Nikulin, Discrete reflection groups in Lobachevsky spaces and algebraic surfaces, in: Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986), Amer. Math. Soc., Providence, RI, 1987, pp. 654–671.

  22. В. В. Никулин, О классификации гиперболических систем корней ранга три, Тр. МИАН. 230 (2000), 3–255. Engl. transl.: V. V. Nikulin, On the classification of hyperbolic root systems of rank three, Proc. Steklov Inst. of Math. 230 (2000), 1–241.

  23. В. В. Никулин, конечность числа арифметических групп, порождённых отражениями в пространствах Лобачевского, Изв. АН СССР. Сер. матем. 71 (2007), vyp. 1, 55–60. Engl. transl.: V. V. Nikulin, Finiteness of the number of arithmetic groups generated by reflections in Lobachevsky spaces, Izvestiya: Math. 71 (2007), no. 1, 53–56.

  24. В. В. Никулин, Константа переноса для арифметических гиперболических групп отражений, Изв. АН СССР. Сер. матем. 75 (2011), vyp. 5, 103–138. Engl. transl.: V. V. Nikulin, The transition constant for arithmetic hyperbolic reflection groups, Izvestiya: Math. 75 (2011), no. 5, 971–1005.

  25. A. M. Odlyzko, Bounds for discriminants and related estimates for class numbers, regulators and zeros of zeta functions: a survey of recent results, Sém. Théor. Nombres Bordeaux (2) 2 (1990), no. 1, 119–141.

  26. G. Poitou, Sur les petits discriminants, Séminaire Delange–Pisot–Poitou, 18e année: (1976/77), Théorie des nombres, Fasc. 1, Secrétariat Math., Paris, 1977, Exp. no. 6, 18.

  27. W. A. Stein et al., Sage Mathematics Software (Version 5.10), The Sage Development Team, 2013, http://www.sagemath.org.

  28. M.-F. Vignéras, Arithmétique des Algèbres de Quaternions, Lecture Notes in Mathematics, Vol. 800, Springer, Berlin, 1980.

  29. Э. Б. Винберг, Дискретные группы, порождённые отражениями в пространствах Лобчачевского, Матем. сБ. 72(114) (1967), номер 3, 471–488. Engl. transl.: È. B. Vinberg, Discrete groups generated by reflections in Lobačevskiĭ spaces, Math. USSR-Sb. 1 (1967), no. 3, 429–444.

  30. È. B. Vinberg, Discrete reflection groups in Lobachevsky spaces, in: Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Warsaw, 1983), PWN, Warsaw, 1984, pp. 593–601.

  31. J. Voight, Enumeration of totally real number fields of bounded root discriminant, in: Algorithmic Number Theory, Lecture Notes in Comput. Sci., Vol. 5011, Springer, Berlin, 2008, pp. 268–281.

  32. J. Voight, Totally real number fields, https://math.dartmouth.edu/~jvoight/nf-tables/index.html.

  33. P. Zograf, A spectral proof of Rademacher’s conjecture for congruence subgroups of the modular group, J. Reine Angew. Math. 414 (1991), 113–116.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to BENJAMIN LINOWITZ.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

LINOWITZ, B. BOUNDS FOR ARITHMETIC HYPERBOLIC REFLECTION GROUPS IN DIMENSION 2. Transformation Groups 23, 743–753 (2018). https://doi.org/10.1007/s00031-017-9445-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00031-017-9445-6

Navigation