Skip to main content
Log in

MIRABOLIC QUANTUM \( {\mathfrak{sl}}_2 \)

  • Published:
Transformation Groups Aims and scope Submit manuscript

Abstract

The convolution algebra of GL d -invariant functions over the space of pairs of partial n-step flags over a finite field was studied by Beilinson-Lusztig-MacPherson. They used it to give a construction of the quantum Schur algebras and, using a stabilization procedure, of the idempotented version of the quantum enveloping algebra of \( {\mathfrak{gl}}_n \). In this paper we expand the construction to the mirabolic setting of triples of two partial flags and a vector, and examine the resulting convolution algebra. In the case of n = 2, we classify the finite-dimensional irreducible representations of the mirabolic quantum algebra and we prove that the category of such representations is semisimple. Finally, we describe a mirabolic version of the quantum Schur-Weyl duality, which involves the mirabolic Hecke algebra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. P. N. Achar, A. Henderson, Orbit closures in the enhanced nilpotent cone, Adv. Math. 219 (2008), no. 1, 27–62.

    Article  MathSciNet  MATH  Google Scholar 

  2. H. Bao, J. Kujawa, Y. Li, W. Wang, Geometric Schur duality of classical type, To appear in Transform. Groups, arXiv1404.4000v3 (2014).

  3. A. A. Beilinson, G. Lusztig, R. MacPherson, A geometric setting for the quantum deformation of GL n , Duke Math. J. 61 (1990), no. 2, 655–677.

    Article  MathSciNet  MATH  Google Scholar 

  4. M. Finkelberg, V. Ginzburg, Cherednik algebras for algebraic curves, in: Representation Theory of Algebraic Groups and Quantum Groups, Progr. Math., Vol. 284, Birkhäuser/Springer, New York, 2010, pp. 121–153.

  5. Z. Fan, Y. Li, Geometric Schur duality of classical type, II, Trans. Amer. Math. Soc. Ser. B 2 (2015), 51–92.

    Article  MathSciNet  MATH  Google Scholar 

  6. I. Grojnowski, G. Lusztig, On bases of irreducible representations of quantum GL n , in: Kazhdan-Lusztig Theory and Related Topics (Chicago, IL, 1989), Contemp. Math., Vol. 139, Amer. Math. Soc., Providence, RI, pp. 167–174.

  7. J. C. Jantzen, Lectures on Quantum Groups, Graduate Studies in Mathematics, Vol. 6, American Mathematical Society, Providence, RI, 1996.

    Google Scholar 

  8. M. Jimbo, A q-difference analogue of U \( \left(\mathfrak{g}\right) \) and the Yang-Baxter equation, Lett. Math. Phys. 10 (1985), no. 1, 63–69.

  9. S. Kato, An exotic Deligne-Langlands correspondence for symplectic groups, Duke Math. J. 148 (2009), no. 2, 305–371.

    Article  MathSciNet  MATH  Google Scholar 

  10. P. Magyar, Bruhat order for two flags and a line, J. Algebraic Combin. 21 (2005), no. 1, 71–101.

    Article  MathSciNet  MATH  Google Scholar 

  11. P. Magyar, J. Weyman, A. Zelevinsky, Multiple flag varieties of finite type, Adv. Math. 141 (1999), no. 1, 97–118.

    Article  MathSciNet  MATH  Google Scholar 

  12. D. Rosso, The mirabolic Hecke algebra, J. Algebra 405 (2014), 179–212.

    Article  MathSciNet  MATH  Google Scholar 

  13. R. Travkin, Mirabolic Robinson-Schensted-Knuth correspondence, Selecta Math. (N.S.) 14 (2009), no. 3–4, 727–758.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to DANIELE ROSSO.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

ROSSO, D. MIRABOLIC QUANTUM \( {\mathfrak{sl}}_2 \) . Transformation Groups 23, 217–255 (2018). https://doi.org/10.1007/s00031-017-9432-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00031-017-9432-y

Navigation