Advertisement

Transformation Groups

, Volume 22, Issue 4, pp 1031–1040 | Cite as

STABLY CO-TAME POLYNOMIAL AUTOMORPHISMS OVER COMMUTATIVE RINGS

  • SHIGERU KURODAEmail author
Article

Abstract

We say that a polynomial automorphism ϕ in n variables is stably co-tame if the tame subgroup in n variables is contained in the subgroup generated by ϕ and affine automorphisms in n+1 variables. In this paper, we give conditions for stable co-tameness of polynomial automorphisms.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [BEW]
    J. Berson, A. van den Essen, D. Wright, Stable tameness of two-dimensional polynomial automorphisms over a regular ring, Adv. Math. 230 (2012), no. 4–6, 2176–2197.CrossRefzbMATHMathSciNetGoogle Scholar
  2. [B1]
    Yu. V. Bodnarchuk, Generating properties of triangular and bitriangular birational automorphisms of an affine space, Dopov. Nats. Akad. Nauk Ukr. Mat. Prirodozn. Tekh. Nauki 2002, no. 11, 7–12.Google Scholar
  3. [B2]
    Y. Bodnarchuk, On generators of the tame invertible polynomial maps group, Internat. J. Algebra Comput. 15 (2005), no. 5–6, 851–867.CrossRefzbMATHMathSciNetGoogle Scholar
  4. [Ed]
    E. Edo, Coordinates of R[x; y]: constructions and classifications, Comm. Algebra 41 (2013), no. 12, 4694–4710.CrossRefzbMATHMathSciNetGoogle Scholar
  5. [EK]
    E. Edo, S. Kuroda, Generalisations of the tame automorphisms over a domain of positive characteristic, Transform. Groups 20 (2015), no. 1, 65–81.CrossRefzbMATHMathSciNetGoogle Scholar
  6. [EL]
    E. Edo, D. Lewis, The affine automorphism group of \( {\mathbb{A}}^3 \) is not a maximal subgroup of the tame automorphism group, Michigan Math. J. 64 (2015), no. 3, 555–568.Google Scholar
  7. [Es]
    A. van den Essen, Polynomial Automorphisms and the Jacobian Conjecture, Progress in Mathematics, Vol. 190, Birkhäuser, Basel, Boston, Berlin, 2000.Google Scholar
  8. [J]
    H. Jung, Über ganze birationale Transformationen der Ebene, J. Reine Angew. Math. 184 (1942), 161–174.zbMATHMathSciNetGoogle Scholar
  9. [K]
    W. van der Kulk, On polynomial rings in two variables, Nieuw Arch. Wisk. (3) 1 (1953), 33–41.Google Scholar
  10. [MK]
    M. Kuroda, Stably Derksen polynomial automorphisms over finite fields (Japanese), Master's Thesis, Tokyo Metropolitan University, January 2016.Google Scholar
  11. [MW]
    S. Maubach, R. Willems, Polynomial automorphisms over finite fields: mimicking tame maps by the Derksen group, Serdica Math. J. 37 (2011), no. 4, 305–322 (2012).Google Scholar
  12. [N]
    M. Nagata, On Automorphism Group of k[x; y], Lectures in Mathematics, Department of Mathematics, Kyoto University, Vol. 5, Kinokuniya, Tokyo, 1972.Google Scholar
  13. [SU]
    I. Shestakov, U. Umirbaev, The tame and the wild automorphisms of polynomial rings in three variables, J. Amer. Math. Soc. 17 (2004), 197–227.CrossRefzbMATHMathSciNetGoogle Scholar
  14. [S]
    M. K. Smith, Stably tame automorphisms, J. Pure Appl. Algebra 58 (1989), 209–212.CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of Mathematics and Information SciencesTokyo Metropolitan UniversityTokyoJapan

Personalised recommendations