Transformation Groups

, Volume 22, Issue 4, pp 1081–1124 | Cite as


  • E. MEINRENKENEmail author


Poisson actions of Poisson Lie groups have an interesting and rich geometric structure. We will generalize some of this structure to Dirac actions of Dirac Lie groups. Among other things, we extend a result of Jiang-Hua Lu, which states that the cotangent Lie algebroid and the action algebroid for a Poisson action form a matched pair. We also give a full classification of Dirac actions for which the base manifold is a homogeneous space H/K, obtaining a generalization of Drinfeld’s classification for the Poisson Lie group case.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A. Alekseev, H. Bursztyn, E. Meinrenken, Pure spinors on Lie groups, Astérisque 327 (2009), 131–199.zbMATHMathSciNetGoogle Scholar
  2. [2]
    A. Alekseev, A. Malkin, E. Meinrenken, Lie group valued moment maps, J. Differential Geom. 48 (1998), no. 3, 445–495.CrossRefzbMATHMathSciNetGoogle Scholar
  3. [3]
    A. Alekseev, P. Xu, Derived brackets and Courant algebroids, unfinished manuscript (2002).Google Scholar
  4. [4]
    C. Blohmann, A. Weinstein, Group-like objects in Poisson geometry and algebra, in: Poisson Geometry in Mathematics and Physics, Contemp. Math., Vol. 450, Amer. Math. Soc., Providence, RI, 2008, pp. 25–39.Google Scholar
  5. [5]
    H. Bursztyn, A. Cabrera, M. del Hoyo, Vector bundles over Lie groupoids and algebroids, preprint, arXiv:1410.5135 (2014).Google Scholar
  6. [6]
    H. Bursztyn, G. Cavalcanti, M. Gualtieri, Reduction of Courant algebroids and generalized complex structures, Adv. Math. 211 (2007), no. 2, 726–765.CrossRefzbMATHMathSciNetGoogle Scholar
  7. [7]
    H. Bursztyn, M. Crainic, Dirac structures, momentum maps, and quasi-Poisson manifolds, in: The Breadth of Symplectic and Poisson Geometry, Progr. Math., Vol. 232, Birkhäuser Boston, Boston, MA, 2005, pp. 1–40.Google Scholar
  8. [8]
    H. Bursztyn, M. Crainic, Dirac geometry, quasi-Poisson actions and D/G-valued moment maps, J. Differential Geom. 82 (2009), no. 3, 501–566.CrossRefzbMATHMathSciNetGoogle Scholar
  9. [9]
    H. Bursztyn, M. Crainic, P. Ševera, Quasi-Poisson structures as Dirac structures, Travaux mathématiques, Fasc. XVI, Trav. Math., XVI, Univ. Luxemb., Luxembourg, 2005, pp. 41–52.Google Scholar
  10. [10]
    H. Bursztyn, D. Iglesias Ponte, P. Severa, Courant morphisms and moment maps, Math. Res. Lett. 16 (2009), no. 2, 215–232.CrossRefzbMATHMathSciNetGoogle Scholar
  11. [11]
    T. Courant, Dirac manifolds, Trans. Amer. Math. Soc. 319 (1990), no. 2, 631–661.CrossRefzbMATHMathSciNetGoogle Scholar
  12. [12]
    T. Courant, A. Weinstein, Beyond Poisson structures, in: Action Hamiltoniennes de Groupes. Troisième Théorème de Lie (Lyon, 1986), Travaux en Cours, Vol. 27, Hermann, Paris, 1988, pp. 39–49.Google Scholar
  13. [13]
    P. Delorme, Classification des triples de Manin pour les algèbres de Lie réductives complexes, J. Algebra 246 (2001), no. 1, 97–174, with an appendix by G. Macey.Google Scholar
  14. [14]
    I. Ya. Dorfman, Dirac structures and integrability of nonlinear evolution equations, Nonlinear Science - theory and applications, Wiley, Chichester, 1993.Google Scholar
  15. [15]
    V. G. Drinfeld, Quantum groups, in: Proceedings of the International Congress of Mathematicians, Vol. 1, 2, Berkeley, Calif., 1986, Amer. Math. Soc., Providence, RI, 1987, pp. 798–820.Google Scholar
  16. [16]
    S. Evens, J.-H. Lu, On the variety of Lagrangian subalgebras. I, Ann. Sci. École Norm. Sup. (4) 34 (2001), no. 5, 631–668.Google Scholar
  17. [17]
    S. Evens, J.-H. Lu, On the variety of Lagrangian subalgebras. II, Ann. Sci. École Norm. Sup. (4) 39 (2006), no. 2, 347–379.Google Scholar
  18. [18]
    R. Fernandes, D. Iglesias Ponte, Integrability of Poisson-Lie group actions, Lett. Math. Phys. 90 (2009), no. 1–3, 137–159.CrossRefzbMATHMathSciNetGoogle Scholar
  19. [19]
    H. Flaschka, T. Ratiu, A convexity theorem for Poisson actions of compact Lie groups, Ann. Sci. Ecole Norm. Sup. 29 (1996), no. 6, 787–809.CrossRefzbMATHMathSciNetGoogle Scholar
  20. [20]
    A. Gracia-Saz, R. Mehta, VB-groupoids and representation theory of Lie groupoids, arXiv:1007.3658v6 (2016), to appear in J. Sympl. Geom.Google Scholar
  21. [21]
    M. Grützmann, M. Stiénon, Matched pairs of Courant algebroids, Indag. Math. (N.S.) 25 (2014), no. 5, 977–991.Google Scholar
  22. [22]
    M. Jotz, Dirac groupoids and Dirac bialgebroids, arXiv:1403.2934v2 (2015).Google Scholar
  23. [23]
    M. Jotz, Dirac Lie groups, Dirac homogeneous spaces and the theorem of Drinfeld, Indiana Univ. Math. J. 60 (2011), no. 1, 319–366.CrossRefzbMATHMathSciNetGoogle Scholar
  24. [24]
    E. Karolinsky, A classification of Poisson homogeneous spaces of complex reductive Poisson-Lie groups, in: Poisson Geometry (Warsaw, 1998), Banach Center Publ., Vol. 51, Polish Acad. Sci., Warsaw, 2000, pp. 103–108.Google Scholar
  25. [25]
    E. Karolinsky, S. Lyapina, Lagrangian subalgebras in g × g, where \( \mathfrak{g} \) is a real simple Lie algebra of real rank one, Travaux mathématiques. Fasc. XVI, Trav. Math., XVI, Univ. Luxemb., Luxembourg, 2005, pp. 229–236.Google Scholar
  26. [26]
    Y. Kosmann-Schwarzbach, F. Magri, Poisson-Lie groups and complete integrability. I. Drinfel’d bialgebras, dual extensions and their canonical representations, Ann. Inst. H. Poincaré Phys. Théor. 49 (1988), no. 4, 433–460.Google Scholar
  27. [27]
    D. Li-Bland, E. Meinrenken, Courant algebroids and Poisson geometry, Internat. Math. Research Notices 11 (2009), 2106–2145.zbMATHMathSciNetGoogle Scholar
  28. [28]
    D. Li-Bland, E. Meinrenken, Dirac Lie groups, Asian J. Math. 18 (2014), no. 5, 779–816.CrossRefzbMATHMathSciNetGoogle Scholar
  29. [29]
    D. Li-Bland, P. Ševera, Quasi-Hamiltonian groupoids and multiplicative Manin pairs, Internat. Math. Research Notices 2011 (2011), 2295–2350.zbMATHMathSciNetGoogle Scholar
  30. [30]
    Z.-J. Liu, A. Weinstein, P. Xu, Manin triples for Lie bialgebroids, J. Differential Geom. 45 (1997), no. 3, 547–574.CrossRefzbMATHMathSciNetGoogle Scholar
  31. [31]
    J.-H. Lu, Momentum mappings and reduction of Poisson actions, in: Symplectic Geometry, Groupoids, and Integrable Systems (Berkeley, CA, 1989), Springer, New York, 1991, pp. 209–226.Google Scholar
  32. [32]
    J.-H. Lu, A note on Poisson homogeneous spaces, in: Poisson Geometry in Mathematics and Physics, Contemp. Math., Vol. 450, Amer. Math. Soc., Providence, RI, 2008, pp. 173–198.Google Scholar
  33. [33]
    J.-H. Lu, A. Weinstein, Poisson Lie groups, dressing transformations, and Bruhat decompositions, J. Differential Geom. 31 (1990), no. 2, 501–526.CrossRefzbMATHMathSciNetGoogle Scholar
  34. [34]
    J.-H. Lu, Poisson homogeneous spaces and Lie algebroids associated to Poisson actions , Duke Math. J. 86 (1997), no. 2, 261–304.CrossRefzbMATHMathSciNetGoogle Scholar
  35. [35]
    K. Mackenzie, Double Lie algebroids and second-order geometry. I, Adv. Math. 94 (1992), no. 2, 180–239.CrossRefzbMATHMathSciNetGoogle Scholar
  36. [36]
    K. Mackenzie, General Theory of Lie Groupoids and Lie Algebroids, London Mathematical Society Lecture Note Series, Vol. 213, Cambridge University Press, Cambridge, 2005.Google Scholar
  37. [37]
    J. Marrero, E. Padron, M. Rodriguez-Olmos, Reduction of a symplectic-like Lie algebroid with momentum map and its application to fiberwise linear Poisson structures, J. Physics A: Math. Theor. 45 (2012), 165–201.CrossRefzbMATHMathSciNetGoogle Scholar
  38. [38]
    B. Milburn, Two categories of Dirac manifolds, arXiv:0712.2636 (2007).Google Scholar
  39. [39]
    T. Mokri, Matched pairs of Lie algebroids, Glasgow Math. J. 39 (1997), no. 2, 167–181.CrossRefzbMATHMathSciNetGoogle Scholar
  40. [40]
    C. Ortiz, Multiplicative Dirac structures on Lie groups, C. R. Math. Acad. Sci. Paris 346 (2008), no. 23–24, 1279–1282.CrossRefzbMATHMathSciNetGoogle Scholar
  41. [41]
    J. Pradines, Remarque sur le groupoïde cotangent de WeinsteinDazord, C. R. Acad. Sci. Paris Sér. I Math. 306 (1988), no. 13, 557–560.zbMATHMathSciNetGoogle Scholar
  42. [42]
    P. Robinson, The Classification of Dirac Homogeneous Spaces, Thesis, University of Toronto, 2014 arXiv:1411.2958 (2014).Google Scholar
  43. [43]
    M. A. Semenov–Tian-Shansky, Dressing transformations and Poisson group actions, Publ. Res. Inst. Math. Sci. 21 (1985), no. 6, 1237–1260.Google Scholar
  44. [44]
    P. Ševera, Letters to Alan Weinstein,, 1998–2000.
  45. [45]
    P. Ševera, F. Valach, Lie groups in quasi-Poisson geometry and braided Hopf algebras , arXiv:1604.07164 (2016).Google Scholar
  46. [46]
    L. Stefanini, On morphic actions and integrability of LA-groupoids, PhD thesis, Zürich 2008, (2009).
  47. [47]
    K. Uchino, Remarks on the definition of a Courant algebroid, Lett. Math. Phys. 60 (2002), no. 2, 171–175.CrossRefzbMATHMathSciNetGoogle Scholar
  48. [48]
    P. Xu, On Poisson groupoids, Internat. J. Math. 6 (1995), no. 1, 101–124.CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of TorontoTorontoCanada

Personalised recommendations