Transformation Groups

, Volume 22, Issue 3, pp 707–751 | Cite as

ON THE PARTITION APPROACH TO SCHUR-WEYL DUALITY AND FREE QUANTUM GROUPS

Article

Abstract

We give a general definition of classical and quantum groups whose representation theory is “determined by partitions” and study their structure. This encompasses many examples of classical groups for which Schur-Weyl duality is described with diagram algebras as well as generalizations of P. Deligne's interpolated categories of representations. Our setting is inspired by many previous works on easy quantum groups and appears to be well suited to the study of free fusion semirings. We classify free fusion semirings and prove that they can always be realized through our construction, thus solving several open questions. This suggests a general decomposition result for free quantum groups which in turn gives information on the compact groups whose Schur-Weyl duality is implemented by partitions. The paper also contains an appendix by A. Chirvasitu proving simplicity results for the reduced C*-algebras of some free quantum groups.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    T. Banica, Théorie des représentations du groupe quantique compact libre O(n), C. R. Acad. Math. Sci. Paris Sér. I Math. 382 (1996), no. 3, 241–244.MATHGoogle Scholar
  2. [2]
    T. Banica, Le groupe quantique compact libre U(n), Comm. Math. Phys. 190 (1997), no. 1, 143–172.MathSciNetCrossRefMATHGoogle Scholar
  3. [3]
    T. Banica, Fusion rules for compact quantum groups, Exposition. Math. 17 (1999), 313–337.MathSciNetMATHGoogle Scholar
  4. [4]
    T. Banica, Representations of compact quantum groups and subfactors, J. Reine Angew. Math. 509 (1999), 167–198.MathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    T. Banica, Symmetries of a generic coaction, Math. Ann. 314 (1999), no. 4, 763–780.MathSciNetCrossRefMATHGoogle Scholar
  6. [6]
    T. Banica, A note on free quantum groups, Ann. Math. Blaise Pascal 15 (2008), 135–146.MathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    T. Banica, S. T. Belinschi, M. Capitaine, B. Collins, Free Bessel laws, Canad. J. Math. 63 (2011), no. 1, 3–37.MathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    T. Banica, A. Skalski, Two-parameter families of quantum symmetry groups, J. Funct. Anal. 260 (2011), no. 11, 3252–3282.MathSciNetCrossRefMATHGoogle Scholar
  9. [9]
    T. Banica, A. Skalski, Quantum isometry groups of duals of free products of cyclic groups, Int. Math. Res. Not. 9 (2012), no. 9, 2094–2122.MATHGoogle Scholar
  10. [10]
    T. Banica, R. Speicher, Liberation of orthogonal Lie groups, Adv. Math. 222 (2009), no. 4, 1461–1501.MathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    T. Banica, R. Vergnioux, Fusion rules for quantum reection groups, J. Noncommut. Geom. 3 (2009), no. 3, 327–359.MathSciNetCrossRefMATHGoogle Scholar
  12. [12]
    J. Bichon, Free wreath product by the quantum permutation group, Algebr. Represent. Theory 7 (2004), no. 4, 343–362.MathSciNetCrossRefMATHGoogle Scholar
  13. [13]
    J. Bichon, A. De Rijdt, S. Vaes, Ergodic coactions with large multiplicity and monoidal equivalence of quantum groups, Comm. Math. Phys. 262 (2006), no. 3, 703–728.MathSciNetCrossRefMATHGoogle Scholar
  14. [14]
    M. Bloss, G-colored partition algebras as centralizer algebras of wreath products, J. Algebra 265 (2003), no. 2, 690–710.MathSciNetCrossRefMATHGoogle Scholar
  15. [15]
    M. Brannan, Reduced operator algebras of trace-preserving quantum automorphism groups, Doc. Math. 18 (2013), 1349–1402.MathSciNetMATHGoogle Scholar
  16. [16]
    R. Brauer, On algebras which are connected with the semisimple continuous groups, Ann. of Math. 38 (1937), no. 4, 857–872.MathSciNetCrossRefMATHGoogle Scholar
  17. [17]
    M. Daws, P. Fima, A. Skalski, S. White, The Haagerup property for locally compact quantum groups, J. Reine Angew. Math., to appear, arXiv:1303.3261 (2013).Google Scholar
  18. [18]
    K. De Commer, A. Freslon, M. Yamashita, CCAP for universal discrete quantum groups, Comm. Math. Phys. 331 (2014), no. 2, 677–701.MathSciNetCrossRefMATHGoogle Scholar
  19. [19]
    P. Deligne, La catégorie des représentations du groupe symétrique S t , quand t n’est pas un entier naturel, in: Algebraic Groups and Homogeneous Spaces, Tata Inst. Fund. Res. Stud. Math., Vol. 19, Narosa, New Delhi, 2007, pp. 209–273.Google Scholar
  20. [20]
    A. Freslon, Examples of weakly amenable discrete quantum groups, J. Funct. Anal. 265 (2013), no. 9, 2164–2187.MathSciNetCrossRefMATHGoogle Scholar
  21. [21]
    A. Freslon, Fusion (semi)rings arising from quantum groups, J. Algebra 417 (2014), 161–197.MathSciNetCrossRefMATHGoogle Scholar
  22. [22]
    A. Freslon, M. Weber, On the representation theory of partition (easy) quantum groups, J. Reine Angew. Math., to appear, arXiv:1308.6390 (2013).Google Scholar
  23. [23]
    P. Glockner, W. Von Waldenfels, The relations of the noncommutative coefficient algebra of the unitary group, in Quantum Probability and Applications IV, Lecture Notes in Mathematics, Vol. 1396, Springer, Berlin, 1989, pp. 182–220.Google Scholar
  24. [24]
    V. F. R. Jones, The Potts model and the symmetric group, in: Subfactors: Proceedings of the Taniguchi Symposium on Operator Algebras (Kyuzeso, 1993), World Sci. Publ., River Edge, NJ, 1994, pp. 259–267.Google Scholar
  25. [25]
    A. J. Kennedy, M. Parvathi, G-vertex colored partition algebras as centralizer algebras of direct products, Comm. Algebra 32 (2004), no. 11, 4337–4361.MathSciNetCrossRefMATHGoogle Scholar
  26. [26]
    F. Knop, A construction of semisimple tensor categories, C. R. Acad. Sci. Paris Sér. I Math. 343 (2006), no. 1, 15–18.MathSciNetCrossRefMATHGoogle Scholar
  27. [27]
    F. Knop, Tensor envelopes of regular categories, Adv. Math. 214 (2007), no. 2, 571–617.MathSciNetCrossRefMATHGoogle Scholar
  28. [28]
    M. Kosuda, Characterization for the modular party algebra, J. Knot Theory Ramifications 17 (2008), no. 8, 939–960.MathSciNetCrossRefMATHGoogle Scholar
  29. [29]
    G. Lehrer, R. B. Zhang, The Brauer category and invariant theory, J. Europ. Math. Soc. 17 (2015), no. 9, 2311–2351.MathSciNetCrossRefMATHGoogle Scholar
  30. [30]
    F. Lemeux, Fusion rules for some free wreath product quantum groups and applications, J. Funct. Anal. 267 (2014), no. 7, 2507–2550.MathSciNetCrossRefMATHGoogle Scholar
  31. [31]
    F. Lemeux, Haagerup property for quantum reection groups, Proc. Amer. Math. Soc. 143 (2015), no. 5, 2017–2031.MathSciNetCrossRefMATHGoogle Scholar
  32. [32]
    F. Lemeux, P. Tarrago, Free wreath product quantum groups: the monoidal category, approximation properties and free probability, preprint, arXiv:1411.4124 (2014).Google Scholar
  33. [33]
    P. Martin, Temperley-Lieb algebras for non-planar statistical mechanics—the partition algebra construction, J. Knot Theory Ramifications 3 (1994), no. 1, 51–82.MathSciNetCrossRefMATHGoogle Scholar
  34. [34]
    M. Mori, On representation categories of wreath products in non-integral rank, Adv. Math. 231 (2012), no. 1, 1–42.MathSciNetCrossRefMATHGoogle Scholar
  35. [35]
    C. Mrozinski, Quantum automorphism groups and SO(3)-deformations, J. Pure Appl. Algebra 219 (2015), no. 1, 1–32.MathSciNetCrossRefMATHGoogle Scholar
  36. [36]
    S. Neshveyev, L. Tuset, Compact Quantum Groups and their Representation Categories, Cours Spécialisés, SMF, 2013.Google Scholar
  37. [37]
    A. Nica, R. Speicher, Lectures on the Combinatorics of Free Probability, London Mathematical Society Lecture Note Series, Vol. 335, Cambridge University Press, Cambridge, 2006.Google Scholar
  38. [38]
    L. Pittau, The free wreath product of a discrete group by a quantum automorphism group, Proc. Amer. Math. Soc. 144 (2016), no. 5, 1985–2001.MathSciNetCrossRefMATHGoogle Scholar
  39. [39]
    S. Raum, Isomorphisms and fusion rules of orthogonal free quantum groups and their free complexifications, Proc. Amer. Math. Soc. 140 (2012), 3207–3218.MathSciNetCrossRefMATHGoogle Scholar
  40. [40]
    S. Raum, M. Weber, The full classification of orthogonal easy quantum groups, Comm. Math. Phys. 341 (2016), no. 3, 751–779.MathSciNetCrossRefMATHGoogle Scholar
  41. [41]
    K. Tanabe, On the centralizer algebra of the unitary reection group G(m; p;n), Nagoya Math. J. 148 (1997), 113–126.MathSciNetCrossRefMATHGoogle Scholar
  42. [42]
    P. Tarrago, M. Weber, The classification of tensor categories of two-colored non-crossing partitions, preprint, arXiv:1509.00988 (2015).Google Scholar
  43. [43]
    S. Vaes, R. Vergnioux, The boundary of universal discrete quantum groups, exactness and factoriality, Duke Math. J. 140 (2007), no. 1, 35–84.MathSciNetCrossRefMATHGoogle Scholar
  44. [44]
    A. Van Daele, S. Wang, Universal quantum groups, Internat. J. Math. 7 (1996), 255–264.MathSciNetCrossRefMATHGoogle Scholar
  45. [45]
    S.Wang, Free products of compact quantum groups, Comm. Math. Phys. 167 (1995), no. 3, 671–692.MathSciNetCrossRefMATHGoogle Scholar
  46. [46]
    S. Wang, Quantum symmetry groups of finite spaces, Comm. Math. Phys. 195 (1998), no. 1, 195–211.MathSciNetCrossRefMATHGoogle Scholar
  47. [47]
    S. L. Woronowicz, Compact matrix pseudogroups, Comm. Math. Phys. 111 (1987), no. 4, 613–665.MathSciNetCrossRefMATHGoogle Scholar
  48. [48]
    S. L. Woronowicz, Tannaka-Krein duality for compact matrix pseudogroups. Twisted SU(N) groups, Invent. Math. 93 (1988), no. 1, 35–76.Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Fachbereich MathematikSaarland UniversitySaarbrückenGermany

Personalised recommendations