Abstract
We establish a relation between Bia lynicki-Birula decomposition for ℂ*- action and the Atiyah-Bott-Berline-Vergne localization formula.
References
M. F. Atiyah, R. Bott, A Lefschetz fixed point formula for elliptic differential operators, Bull. Amer. Math. Soc. 72 (1966), 245-250.
M. F. Atiyah, I. M. Singer, The index of elliptic operators. III, Ann. of Math. (2) 87 (1968), 546-604.
M. F. Atiyah, R. Bott, The moment map and equivariant cohomology, Topology 23 (1984), 1-28.
P. F. Baum, R. Bott, On the zeros of meromorphic vector-fields, in: Essays on Topology and Related Topics (Mémoires dédiés à Georges de Rham), Springer, New York, 1970, pp. 29-47.
N. Berline, E. Getzler, M. Vergne, Heat Kernels and Dirac Operators, Grundlehren der Mathematischen Wissenschaften, Vol. 298, Springer-Verlag, Berlin, 1992.
N. Berline, M. Vergne, Classes caractéristiques équivariantes. Formule de localisation en cohomologie équivariante, C. R. Acad. Sci. Paris Sér. I Math. 295 (1982), no. 9, 539-541.
A. Białynicki-Birula, Some theorems on actions of algebraic groups, Ann. of Math. (2) 98 (1973), 480-497.
A. Białynicki-Birula, On fixed points of torus actions on projective varieties, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 22 (1974), 1097-1101.
A. Białynicki-Birula, Some properties of the decompositions of algebraic varieties determined by actions of a torus, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 24 (1976), no. 9, 667-674.
E. Bierstone, P. D. Milman, Canonical desingularization in characteristic zero by blowing up the maximum strata of a local invariant, Invent. Math. 128 (1997), no. 2, 207-302.
F. Bittner, The universal Euler characteristic for varieties of characteristic zero, Compos. Math. 140 (2004), no. 4, 1011-1032.
A. Borel, Seminar on Transformation Groups, with contributions by G. Bredon, E. E. Floyd, D. Montgomery, R. Palais, Annals of Mathematics Studies, No. 46, Princeton University Press, Princeton, NJ, 1960.
R. Bott, Nondegenerate critical manifolds, Ann. of Math. (2) 60 (1954), 248-261.
J.-P. Brasselet, J. Schürmann, S. Yokura, Hirzebruch classes and motivic Chern classes for singular spaces, J. Topol. Anal. 2 (2010), no. 1, 1-55.
M. Brion, M. Vergne, An equivariant Riemann-Roch theorem for complete, simplicial toric varieties, J. reine angew. Math. 482 (1997), 67-92.
P. Brosnan, On motivic decompositions arising from the method of Bia lynicki-Birula, Invent. Math. 161 (2005), no. 1, 91-111.
J. B. Carrell, R. M. Goresky, A decomposition theorem for the integral homology of a variety, Invent. Math. 73 (1983), no. 3, 367-381.
J. B. Carrell, A. J. Sommese, Some topological aspects of C* actions on compact Kaehler manifolds, Comment. Math. Helv. 54 (1979), no. 4, 567-582.
T. Chang, T. Skjelbred, The topological Schur lemma and related results, Ann. of Math. (2) 100 (1974), 307-321.
D. Edidin, W. Graham, Localization in equivariant intersection theory and the Bott residue formula, Amer. J. Math. 120 (1998), no. 3, 619-636.
T. Frankel, Fixed points and torsion on Kähler manifolds, Ann. of Math. (2) 70 (1959), 1-8.
W. Fulton, Introduction to Toric Varieties, Annals of Mathematics Studies, Vol. 131, Princeton University Press, Princeton, NJ, 1993.
W. Fulton, Intersection Theory, 2nd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, Vol. 2, Springer-Verlag, Berlin, 1998.
M. Goresky, R. Kottwitz, R. MacPherson, Equivariant cohomology, Koszul duality, and the localization theorem, Invent. Math. 131 (1998), no. 1, 25-83.
V. Guillemin, S. Sternberg, Symplectic Techniques in Physics, Cambridge University Press, Cambridge, 1984.
F. Hirzebruch, Neue Topologische Methoden in der Algebraischen Geometrie, Ergebnisse der Mathematik und ihrer Grenzgebiete (N.F.), Heft 9, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1956.
D. Husemoller, Fibre Bundles, 3rd ed., Graduate Texts in Mathematics, Vol. 20, Springer-Verlag, New York, 1994.
D. Huybrechts, Complex Geometry, an Introduction, Universitext, Springer-Verlag, Berlin, 2005.
L. C. Jeffrey, F. C. Kirwan, Localization and the quantization conjecture, Topology 36 (1997), no. 3, 647-693.
F. C. Kirwan, Cohomology of Quotients in Symplectic and Algebraic Geometry, Mathematical Notes, Vol. 31, Princeton University Press, Princeton, NJ, 1984.
M. Mikosz, A. Weber, Equivariant Hirzebruch class for quadratic cones via degenerations, J. Singul. 12 (2015), 131-140.
O. R. Musin, On rigid Hirzebruch genera, Mosc. Math. J. 11 (2011), no. 1, 139-147, 182.
D. Quillen, The spectrum of an equivariant cohomology ring. I, Ann. of Math. (2) 94 (1971), 549-572.
G. Segal, Equivariant K-theory, Inst. Hautes Études Sci. Publ. Math. 34 (1968), 129-151.
P. A. Smith, A theorem on fixed points for periodic transformations, Ann. of Math. (2) 35 (1934), no. 3, 572-578.
H. Sumihiro, Equivariant completion, J. Math. Kyoto Univ. 14 (1974), 1-28.
B. Totaro, The elliptic genus of a singular variety, in: Elliptic Cohomology, London Math. Soc. Lecture Note Ser., Vol. 342, Cambridge Univ. Press, Cambridge, 2007, pp. 360-364.
M. Vergne, Applications of equivariant cohomology, International Congress of Mathematicians, Vol. I, Eur. Math. Soc., Zürich, 2007, pp. 635-664.
A. Weber, Equivariant Hirzebruch class for singular varieties, Selecta Math., published online http://link.springer.com/article/10.1007/s00029-015-0214-x.
E. Witten, Supersymmetry and Morse theory, J. Differential Geom. 17 (1982), no. 4, 661-692 (1983).
Author information
Authors and Affiliations
Corresponding author
Additional information
(ANDRZEJ WEBER) Supported by NCN grant 2013/08/A/ST1/00804.
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
About this article
Cite this article
WEBER, A. HIRZEBRUCH CLASS AND BIA LYNICKI-BIRULA DECOMPOSITION. Transformation Groups 22, 537–557 (2017). https://doi.org/10.1007/s00031-016-9388-3
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00031-016-9388-3
Keywords
- Algebraic Variety
- Toric Variety
- Normal Bundle
- Symplectic Manifold
- Ahler Manifold