Skip to main content

Advertisement

SpringerLink
  • Transformation Groups
  • Journal Aims and Scope
  • Submit to this journal
HIRZEBRUCH CLASS AND BIA LYNICKI-BIRULA DECOMPOSITION
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

ADMISSIBLE SUBSETS AND LITTELMANN PATHS IN AFFINE KAZHDAN–LUSZTIG THEORY

17 September 2018

JÉRÉMIE GUILHOT

On adjoint Bloch–Kato Selmer groups for $$\textrm{GSp}_{2g}$$ GSp 2 g

19 November 2022

Ju-Feng Wu

An equivariant Atiyah–Patodi–Singer index theorem for proper actions II: the K-theoretic index

17 January 2022

Peter Hochs, Bai-Ling Wang & Hang Wang

Galois Correspondence and Fourier Analysis on Local Discrete Subfactors

26 January 2022

Marcel Bischoff, Simone Del Vecchio & Luca Giorgetti

Chern—Simons Action and Disclinations

01 May 2018

M. O. Katanaev

On equivariant Hom-Leibniz cohomology

27 August 2021

Ripan Saha

Cohomological equation and cocycle rigidity of discrete parabolic actions in some higher-rank Lie groups

01 November 2020

James Tanis & Zhenqi Jenny Wang

Bihamiltonian Cohomologies and Integrable Hierarchies II: The Tau Structures

14 June 2018

Boris Dubrovin, Si-Qi Liu & Youjin Zhang

The Borsuk–Ulam Type Theorems for Finite-Dimensional Compact Group Actions

06 June 2021

Mehmet Onat

Download PDF
  • Open Access
  • Published: 02 May 2016

HIRZEBRUCH CLASS AND BIA LYNICKI-BIRULA DECOMPOSITION

  • ANDRZEJ WEBER1,2 

Transformation Groups volume 22, pages 537–557 (2017)Cite this article

  • 478 Accesses

  • 7 Citations

  • Metrics details

Abstract

We establish a relation between Bia lynicki-Birula decomposition for ℂ*- action and the Atiyah-Bott-Berline-Vergne localization formula.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. M. F. Atiyah, R. Bott, A Lefschetz fixed point formula for elliptic differential operators, Bull. Amer. Math. Soc. 72 (1966), 245-250.

    Article  MathSciNet  MATH  Google Scholar 

  2. M. F. Atiyah, I. M. Singer, The index of elliptic operators. III, Ann. of Math. (2) 87 (1968), 546-604.

  3. M. F. Atiyah, R. Bott, The moment map and equivariant cohomology, Topology 23 (1984), 1-28.

    Article  MathSciNet  MATH  Google Scholar 

  4. P. F. Baum, R. Bott, On the zeros of meromorphic vector-fields, in: Essays on Topology and Related Topics (Mémoires dédiés à Georges de Rham), Springer, New York, 1970, pp. 29-47.

    Google Scholar 

  5. N. Berline, E. Getzler, M. Vergne, Heat Kernels and Dirac Operators, Grundlehren der Mathematischen Wissenschaften, Vol. 298, Springer-Verlag, Berlin, 1992.

    Book  MATH  Google Scholar 

  6. N. Berline, M. Vergne, Classes caractéristiques équivariantes. Formule de localisation en cohomologie équivariante, C. R. Acad. Sci. Paris Sér. I Math. 295 (1982), no. 9, 539-541.

  7. A. Białynicki-Birula, Some theorems on actions of algebraic groups, Ann. of Math. (2) 98 (1973), 480-497.

  8. A. Białynicki-Birula, On fixed points of torus actions on projective varieties, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 22 (1974), 1097-1101.

    MathSciNet  MATH  Google Scholar 

  9. A. Białynicki-Birula, Some properties of the decompositions of algebraic varieties determined by actions of a torus, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 24 (1976), no. 9, 667-674.

    MathSciNet  MATH  Google Scholar 

  10. E. Bierstone, P. D. Milman, Canonical desingularization in characteristic zero by blowing up the maximum strata of a local invariant, Invent. Math. 128 (1997), no. 2, 207-302.

    Article  MathSciNet  MATH  Google Scholar 

  11. F. Bittner, The universal Euler characteristic for varieties of characteristic zero, Compos. Math. 140 (2004), no. 4, 1011-1032.

    Article  MathSciNet  MATH  Google Scholar 

  12. A. Borel, Seminar on Transformation Groups, with contributions by G. Bredon, E. E. Floyd, D. Montgomery, R. Palais, Annals of Mathematics Studies, No. 46, Princeton University Press, Princeton, NJ, 1960.

  13. R. Bott, Nondegenerate critical manifolds, Ann. of Math. (2) 60 (1954), 248-261.

  14. J.-P. Brasselet, J. Schürmann, S. Yokura, Hirzebruch classes and motivic Chern classes for singular spaces, J. Topol. Anal. 2 (2010), no. 1, 1-55.

    Article  MathSciNet  MATH  Google Scholar 

  15. M. Brion, M. Vergne, An equivariant Riemann-Roch theorem for complete, simplicial toric varieties, J. reine angew. Math. 482 (1997), 67-92.

    MathSciNet  MATH  Google Scholar 

  16. P. Brosnan, On motivic decompositions arising from the method of Bia lynicki-Birula, Invent. Math. 161 (2005), no. 1, 91-111.

    Article  MathSciNet  MATH  Google Scholar 

  17. J. B. Carrell, R. M. Goresky, A decomposition theorem for the integral homology of a variety, Invent. Math. 73 (1983), no. 3, 367-381.

    Article  MathSciNet  MATH  Google Scholar 

  18. J. B. Carrell, A. J. Sommese, Some topological aspects of C* actions on compact Kaehler manifolds, Comment. Math. Helv. 54 (1979), no. 4, 567-582.

    Article  MathSciNet  MATH  Google Scholar 

  19. T. Chang, T. Skjelbred, The topological Schur lemma and related results, Ann. of Math. (2) 100 (1974), 307-321.

  20. D. Edidin, W. Graham, Localization in equivariant intersection theory and the Bott residue formula, Amer. J. Math. 120 (1998), no. 3, 619-636.

    Article  MathSciNet  MATH  Google Scholar 

  21. T. Frankel, Fixed points and torsion on Kähler manifolds, Ann. of Math. (2) 70 (1959), 1-8.

  22. W. Fulton, Introduction to Toric Varieties, Annals of Mathematics Studies, Vol. 131, Princeton University Press, Princeton, NJ, 1993.

  23. W. Fulton, Intersection Theory, 2nd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, Vol. 2, Springer-Verlag, Berlin, 1998.

  24. M. Goresky, R. Kottwitz, R. MacPherson, Equivariant cohomology, Koszul duality, and the localization theorem, Invent. Math. 131 (1998), no. 1, 25-83.

    Article  MathSciNet  MATH  Google Scholar 

  25. V. Guillemin, S. Sternberg, Symplectic Techniques in Physics, Cambridge University Press, Cambridge, 1984.

    MATH  Google Scholar 

  26. F. Hirzebruch, Neue Topologische Methoden in der Algebraischen Geometrie, Ergebnisse der Mathematik und ihrer Grenzgebiete (N.F.), Heft 9, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1956.

  27. D. Husemoller, Fibre Bundles, 3rd ed., Graduate Texts in Mathematics, Vol. 20, Springer-Verlag, New York, 1994.

  28. D. Huybrechts, Complex Geometry, an Introduction, Universitext, Springer-Verlag, Berlin, 2005.

  29. L. C. Jeffrey, F. C. Kirwan, Localization and the quantization conjecture, Topology 36 (1997), no. 3, 647-693.

    Article  MathSciNet  MATH  Google Scholar 

  30. F. C. Kirwan, Cohomology of Quotients in Symplectic and Algebraic Geometry, Mathematical Notes, Vol. 31, Princeton University Press, Princeton, NJ, 1984.

  31. M. Mikosz, A. Weber, Equivariant Hirzebruch class for quadratic cones via degenerations, J. Singul. 12 (2015), 131-140.

    MathSciNet  MATH  Google Scholar 

  32. O. R. Musin, On rigid Hirzebruch genera, Mosc. Math. J. 11 (2011), no. 1, 139-147, 182.

  33. D. Quillen, The spectrum of an equivariant cohomology ring. I, Ann. of Math. (2) 94 (1971), 549-572.

  34. G. Segal, Equivariant K-theory, Inst. Hautes Études Sci. Publ. Math. 34 (1968), 129-151.

    Article  MATH  Google Scholar 

  35. P. A. Smith, A theorem on fixed points for periodic transformations, Ann. of Math. (2) 35 (1934), no. 3, 572-578.

  36. H. Sumihiro, Equivariant completion, J. Math. Kyoto Univ. 14 (1974), 1-28.

    Article  MathSciNet  MATH  Google Scholar 

  37. B. Totaro, The elliptic genus of a singular variety, in: Elliptic Cohomology, London Math. Soc. Lecture Note Ser., Vol. 342, Cambridge Univ. Press, Cambridge, 2007, pp. 360-364.

  38. M. Vergne, Applications of equivariant cohomology, International Congress of Mathematicians, Vol. I, Eur. Math. Soc., Zürich, 2007, pp. 635-664.

  39. A. Weber, Equivariant Hirzebruch class for singular varieties, Selecta Math., published online http://link.springer.com/article/10.1007/s00029-015-0214-x.

  40. E. Witten, Supersymmetry and Morse theory, J. Differential Geom. 17 (1982), no. 4, 661-692 (1983).

Download references

Author information

Authors and Affiliations

  1. Department of Mathematics, Warsaw University, ul. Banacha 2, 02-097, Warszawa, Poland

    ANDRZEJ WEBER

  2. Institute of Mathematics, Polish Academy of Sciences, ul. Śniadeckich 8, 00-656, Warszawa, Poland

    ANDRZEJ WEBER

Authors
  1. ANDRZEJ WEBER
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to ANDRZEJ WEBER.

Additional information

(ANDRZEJ WEBER) Supported by NCN grant 2013/08/A/ST1/00804.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

WEBER, A. HIRZEBRUCH CLASS AND BIA LYNICKI-BIRULA DECOMPOSITION. Transformation Groups 22, 537–557 (2017). https://doi.org/10.1007/s00031-016-9388-3

Download citation

  • Published: 02 May 2016

  • Issue Date: June 2017

  • DOI: https://doi.org/10.1007/s00031-016-9388-3

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Algebraic Variety
  • Toric Variety
  • Normal Bundle
  • Symplectic Manifold
  • Ahler Manifold
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.