Transformation Groups

, Volume 22, Issue 4, pp 911–932 | Cite as


  • POLYXENI LAMPROUEmail author


Let p denote a maximal (truncated) parabolic subalgebra of a simple Lie algebra \( \mathfrak{g} \). It is known that the Poisson centre Y (\( \mathfrak{p} \)) is a polynomial algebra in many cases. We construct a slice for the coadjoint action of p, thus extending a theorem of Kostant. The role of the principal \( \mathfrak{s}\mathfrak{l} \) 2-triple is played by an adapted pair.

AMS Classification 17B35 16W22 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [B]
    N. Bourbaki, Groupes et Algèbres de Lie, Chapitres IV-VI, Hermann, Paris, 1968. Russian transl.: Н. Бурбаки, Группы и алгебра Ли, Мир, М., 1972.Google Scholar
  2. [D]
    J. Dixmier, Enveloping Algebras, North-Holland Mathematical Library, Vol. 14, North-Holland, Amsterdam, 1977. Russian transl.: Ж. Диксмье, Универсальныe Обёpmывaющue алгебры, Мир, M., 1978.Google Scholar
  3. [DDV]
    J. Dixmier, M. Duflo, M. Vergne, Sur la représentation coadjointe d’une algèbre de Lie, Compositio Math. 29 (1974), 309-323.zbMATHMathSciNetGoogle Scholar
  4. [FJ1]
    F. Fauquant-Millet, A. Joseph, Semi-centre de l’algèbre enveloppante d’une sous-algèbre parabolique d’une algèbre de Lie semi-simple, Ann. Sci. École. Norm. Sup. (4) 38 (2005), no. 2, 155-191.Google Scholar
  5. [FJ2]
    F. Fauquant-Millet, A. Joseph, La somme des faux degrés–un mystère en théorie des invariants, Adv. in Math. 217 (2008), 1476-1520.CrossRefzbMATHMathSciNetGoogle Scholar
  6. [FJ3]
    F. Fauquant-Millet, A. Joseph, Adapted pairs and Weierstrass sections, arXiv: 1503.02523 (2015).Google Scholar
  7. [J1]
    A. Joseph, A preparation theorem for the prime spectrum of a semisimple Lie algebra, J. Algebra 48 (1977), 241-289.CrossRefzbMATHMathSciNetGoogle Scholar
  8. [J2]
    A. Joseph, On semi-invariants and index for biparabolic (seaweed) algebras I, J. Algebra 305 (2006), no. 1, 487-515.CrossRefzbMATHMathSciNetGoogle Scholar
  9. [J3]
    A. Joseph, On semi-invariants and index for biparabolic (seaweed) algebras II, J. Algebra 312 (2007), no. 1, 158-193.CrossRefzbMATHMathSciNetGoogle Scholar
  10. [J4]
    A. Joseph, Slices for biparabolic coadjoint actions in type A, J. Algebra 319 (2008), no. 12, 5060-5100.CrossRefzbMATHMathSciNetGoogle Scholar
  11. [J5]
    A. Joseph, Compatible adapted pairs and a common slice theorem for some centralizers, Transform. Groups 13 (2008), no. 3-4, 637-669.CrossRefzbMATHMathSciNetGoogle Scholar
  12. [J6]
    A. Joseph, An algebraic slice in the coadjoint space of the Borel and the Coxeter element, Adv. in Math. 227 (2011), 522-585.CrossRefzbMATHMathSciNetGoogle Scholar
  13. [JL]
    A. Joseph, P. Lamprou, Maximal Poisson commutative subalgebras for truncated parabolic subalgebras of maximal index in \( \mathfrak{s}\mathfrak{l} \) n, Transform. Groups 12 (2007), no. 3, 549-571.CrossRefzbMATHMathSciNetGoogle Scholar
  14. [JS]
    A. Joseph, D. Shafrir, Polynomiality of invariants, unimodularity and adapted pairs, Transform. Groups 15 (2010), no. 4, 851-882.CrossRefzbMATHMathSciNetGoogle Scholar
  15. [K]
    B. Kostant, Lie group representations on polynomial rings, Amer. J. Math. 85 (1963), 327-404.CrossRefzbMATHMathSciNetGoogle Scholar
  16. PPY]
    D. Panyushev, A. Premet, O. Yakimova, On symmetric invariants of centralisers in reductive Lie algebras J. Algebra 313 (2007), no. 1, 343-391.CrossRefzbMATHMathSciNetGoogle Scholar
  17. [S]
    J-Y. Shi, The number of -sign types, Quart. J. Math. Oxford Ser. (2) 48 (1997), no. 189, 93-105.Google Scholar
  18. [TY]
    P. Tauvel, R. W. T. Yu, Sur l’indice de certaines algèbres de Lie, Ann. Inst. Fourier (Grenoble) 54 (2004), 1793-1810.CrossRefzbMATHMathSciNetGoogle Scholar
  19. [Y]
    O. Yakimova, A counterexample to Premet’s and Joseph’s conjectures, Bull. Lond. Math. Soc. 39 (2007), no. 5, 749-754.CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Université de Lyon UJM-Saint-EtienneSaint-EtienneFrance
  2. 2.Department of MathematicsUniversity of Haifa Mount CarmelHaifaIsrael

Personalised recommendations