Skip to main content
Log in

MULTITRANSITIVITY OF CALOGERO-MOSER SPACES

  • Published:
Transformation Groups Aims and scope Submit manuscript

Abstract

Let G be the group of unimodular automorphisms of a free associative ℂ-algebra on two generators. A theorem of G. Wilson and the first author [BW] asserts that the natural action of G on the Calogero-Moser spaces C n is transitive for all n ϵ ℕ. We extend this result in two ways: first, we prove that the action of G on C n is doubly transitive, meaning that G acts transitively on the configuration space of ordered pairs of distinct points in C n ; second, we prove that the diagonal action of G on \( {C}_{n_1}\times {C}_{n_2}\times \cdots \times {C}_{n_m} \) is transitive provided n 1, n 2, …, n m are pairwise distinct numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Arzhantsev, H. Flenner, S. Kaliman, F. Kutzschebauch, M. Zaidenberg, Flexible varieties and automorphism groups, Duke Math. J. 162 (2013), 767-823.

    Article  MathSciNet  MATH  Google Scholar 

  2. Yu. Berest, A. Eshmatov, F. Eshmatov, Dixmier groups and Borel subgroups, arXiv:1401.7356.

  3. Yu. Berest, G. Wilson, Automorphisms and ideals of the Weyl algebra, Math. Ann. 318 (2000), 127-147.

    Article  MathSciNet  MATH  Google Scholar 

  4. Yu. Berest, G. Wilson, Classification of rings of differential operators on affine curves, Internat. Math. Res. Notices 2 (1999), 105-109.

    Article  MathSciNet  Google Scholar 

  5. Yu. Berest, G. Wilson, Differential isomorphism and equivalence of algebraic varieties, in: Topology, Geometry and Quantum Field Theory (Ed. U. Tillmann), London Math. Soc. Lecture Note Ser., Vol. 308, Cambridge Univ. Press, Cambridge, 2004, pp. 98-126.

  6. Yu. Berest, G. Wilson, Mad subalgebras of rings of differential operators on curves, Adv. Math. 212 (2007), 163-190.

    Article  MathSciNet  MATH  Google Scholar 

  7. A. Borel, Les bouts des espaces homogènes de groupes de Lie, Ann. Math. 58 (1953), no. 2, 443-457.

    Article  MathSciNet  MATH  Google Scholar 

  8. A. J. Czerniakiewicz, Automorphisms of a free associative algebra of rank 2, I, II, Trans. Amer. Math. Soc. 160 (1971), 393-401; 171 (1972), 309–315.

  9. P. Etingof, Calogero-Moser Systems and Representation Theory, Zürich Lectures in Advanced Mathematics, EMS, Zürich, 2007.

    Book  Google Scholar 

  10. P. Etingof, V. Ginzburg, Symplectic reection algebras, Calogero-Moser space, and deformed Harish-Chandra homomorphism, Invent. Math. 147 (2002), no. 2, 243-348.

    Article  MathSciNet  MATH  Google Scholar 

  11. V. Ginzburg, Non-commutative symplectic geometry, quiver varieties, and operads, Math. Res. Lett. 8 (2001), no. 3, 377-400.

    Article  MathSciNet  MATH  Google Scholar 

  12. I. Gordon, Symplectic reection algebras, in: Trends in Representation Theory of Algebras and Related Topics, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2008, pp. 285-347.

  13. D. Kazhdan, B. Kostant, S. Sternberg, Hamiltonian group actions and dynamical systems of Calogero type, Comm. Pure and Appl. Math. 31 (1978), 481-507.

    Article  MathSciNet  MATH  Google Scholar 

  14. M. Kouakou, A. Tchoudjem, On the automorphism group of the first Weyl algebra, Comm. Algebra 42 (2014), no. 1, 81-95.

    Article  MathSciNet  MATH  Google Scholar 

  15. Л. Г. Макар-Лиманов, Об автоморфизмах свободной алгебры с двумя образующими, Функц. анализ и eгo пpилoж. 4 (1970), vyp. 3, 107-108. Engl. transl.: L. Makar-Limanov, Automorphisms of a free algebra with two generators, Funct. Anal. Appl. 4 (1970), no. 3, 262-264.

  16. H. Nakajima, Lectures on Hilbert Schemes of Points on Surfaces, University Lecture Series, Vol. 18, American Mathematical Society, Rhode Island, 1999.

  17. H. Nakajima, Instantons on ALE spaces, quiver varieties, and Kac-Moody algebras, Duke Math. J. 76 (1994), 365-416.

    Article  MathSciNet  MATH  Google Scholar 

  18. V. L. Popov, On infinite-dimensional algebraic transformation groups, Transform. Groups 19 (2014), no. 2, 549-568.

    Article  Google Scholar 

  19. J. T. Stafford, Endomorphisms of right ideals of the Weyl algebra, Trans. Amer. Math. Soc. 299 (1987), 623-639.

    Article  MathSciNet  MATH  Google Scholar 

  20. G. Wilson, Collisions of Calogero-Moser particles and an adelic Grassmannian (with an Appendix by I. G. Macdonald), Invent. Math. 133 (1998), 1-41.

    Article  MathSciNet  MATH  Google Scholar 

  21. G. Wilson, Equivariant maps between Calogero-Moser spaces, arXiv:1009. 3660.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to YURI BEREST.

Additional information

Supported by NSF grant.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

BEREST, Y., ESHMATOV, A. & ESHMATOV, F. MULTITRANSITIVITY OF CALOGERO-MOSER SPACES. Transformation Groups 21, 35–50 (2016). https://doi.org/10.1007/s00031-015-9332-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00031-015-9332-y

Keywords

Navigation