Skip to main content
Log in

ON THE COADJOINT ORBITS OF MAXIMAL UNIPOTENT SUBGROUPS OF REDUCTIVE GROUPS

  • Published:
Transformation Groups Aims and scope Submit manuscript

Abstract

Let G be a simple algebraic group defined over an algebraically closed field of characteristic 0 or a good prime for G. Let U be a maximal unipotent subgroup of G and \( \mathfrak{u} \) its Lie algebra. We prove the separability of orbit maps and the connectedness of centralizers for the coadjoint action of U on (certain quotients of) the dual \( \mathfrak{u} \)* of \( \mathfrak{u} \). This leads to a method to give a parametrization of the coadjoint orbits in terms of so-called minimal representatives which form a disjoint union of quasi-affine varieties. Moreover, we obtain an algorithm to explicitly calculate this parametrization which has been used for G of rank at most 8, except E8.

When G is defined and split over the field of q elements, for q the power of a good prime for G, this algorithmic parametrization is used to calculate the number k(U(q); \( \mathfrak{u} \)*(q)) of coadjoint orbits of U(q) on \( \mathfrak{u} \)*(q). Since k(U(q), \( \mathfrak{u} \)*(q)) coincides with the number k(U(q)) of conjugacy classes in U(q), these calculations can be viewed as an extension of the results obtained in [11]. In each case considered here there is a polynomial h(t) with integer coefficients such that for every such q we have k(U(q)) = h(q). We also explain implications of our results for a parametrization of the irreducible complex characters of U(q).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Bardsley, R. W. Richardson, Étale slices for algebraic transformation groups in characteristic p, Proc. London Math. Soc. (3) 51 (1985), no. 2, 295–317.

  2. A. Borel, Linear Algebraic Groups, Graduate Texts in Mathematics, Vol. 126, Springer-Verlag 1991.

  3. M. Boyarchenko, M. Sabitova, The orbit method for profinite groups and a p-adic analogue of Brown's Theorem, Israel J. Math. 165 (2008), 67–91.

  4. J. D. Bradley, S. M. Goodwin, Conjugacy classes in Sylow p-subgroups of finite Chevalley groups in bad characteristic, Comm. Algebra 42 (2014), no. 8, 3245–3258.

  5. H. Bürgstein, W. H. Hesselink, Algorithmic orbit classification for some Borel group actions, Comp. Math. 61 (1987), 3–41.

  6. F. Digne, J. Michel, Representations of finite groups of Lie type, London Mathematical Society Student Texts, Vol. 21, Cambridge University Press, Cambridge, 1991.

  7. A. Evseev, Reduction for characters of finite algebra groups, J. Algebra 325 (2011), 321–351.

  8. The GAP Group, GAP–Groups, Algorithms, and Programming, Version 4:3, 2002, http://www.gap-system.org.

  9. S. M. Goodwin, Relative Springer isomorphisms, J. Algebra 290 (2005), no. 1, 266–281.

  10. S. M. Goodwin, On the conjugacy classes in maximal unipotent subgroups of simple algebraic groups, Transform. Groups 11 (2006), no. 1, 51–76.

  11. S. M. Goodwin, P. Mosch, G. Röhrle, Calculating conjugacy classes in Sylow p-subgroups of finite Chevalley groups of rank six and seven, LMS J. Comput. Math. 17 (2014), no. 1, 109–122.

  12. S. M. Goodwin, G. Röhrle, Calculating conjugacy classes in Sylow p-subgroups of finite Chevalley groups, J. Algebra 321 (2009), no. 11, 3321–3334.

  13. G.-M. Greuel, G. Pfister and H. Schönemann, Singular 3-1-1, A Computer Algebra System for Polynomial Computations, Centre for Computer Algebra, University of Kaiserslautern, 2009, http://www.singular.uni-kl.de

  14. Z. Halasi, P. P. Pálfy, The number of conjugacy classes in pattern groups is not a polynomial function, J. Group Theory 14 (2011), 841–854.

  15. G. Higman, Enumerating p-groups. I. Inequalities, Proc. London Math. Soc. (3) 10 (1960), 24–30.

  16. F. Himstedt, S. Huang, Character table of a Borel subgroup of the Ree groups 2 F 4(q 2), LMS J. Comput. Math. 12 (2009), 1–53.

  17. F. Himstedt, T. Le, K. Magaard, Characters of the Sylow p-Subgroups of the Cheval-ley Groups D 4(p n), J. Algebra 332 (2011), 414–427.

  18. I. M. Isaacs, Characters of groups associated with finite algebras, J. Algebra 177 (1995), 708–730.

  19. I. M. Isaacs, Counting characters of upper triangular groups, J. Algebra 315 (2007), no. 2, 698–719.

  20. U. Jürgens, G. Röhrle, Algorithmic modality analysis for parabolic groups, Geom. Dedicata 73 (1998), no. 3, 317–337.

  21. D. Kazhdan, Proof of Springer's Hypothesis, Israel J. Math. 28 (1977), no. 4, 272–286.

  22. А. А. Кириллов, Унитарные представления нильпотентных групп Ли, УМН 17 (1962), no. 4(106), 57–110. Engl. transl.: A. A. Kirillov, Unitary representations of nilpotent Lie groups, Russ. Math. Surv. 17 (1962), no. 4, 53–104.

  23. A. A. Kirillov, Variations on the triangular theme, in: Lie Groups and Lie Algebras: E. B. Dynkin's Seminar, Amer. Math. Soc. Transl. Ser. 2, Vol. 169, American Mathematical Society, Providence, RI, 1995, pp. 43–73.

  24. T. Le, Irreducible characters of Sylow p-subgroups of the Steinberg triality groups 3 D 4(p 3m), preprint, 2013, arXiv:1309.1583.

  25. T. Le, K. Magaard, On the character degrees of Sylow p-subgroups of Chevalley groups G(p f) of type E, Forum Math. 27 (2015), no. 1, 1–55.

  26. G. I. Lehrer, Discrete series and the unipotent subgroup, Compos. Math. 28 (1974), 9–19.

  27. E. Marberg, Combinatorial methods for character enumeration for the unitriangular groups, J. Algebra 345 (2011), 295–323.

  28. E. Marberg, Exotic characters of unitriangular matrix groups, J. Pure Appl. Algebra 216 (2012), 239–254.

  29. P. Mosch, On adjoint and coadjoint orbits of maximal unipotent subgroups of reductive algebraic groups, PhD Thesis, Ruhr-University Bochum, 2014.

  30. R. W. Richardson, Conjugacy classes in Lie algebras and algebraic groups, Ann. Math. 86 (1967), 1–15.

  31. G. R. Robinson, Counting conjugacy classes of unitriangular groups associated to finite-dimensional algebras, J. Group Theory 1 (1998), no. 3, 271–274.

  32. G. Röhrle, A note on the modality of parabolic subgroups, Indag. Math. (N.S.) 8 (1997), no. 4, 549–559.

  33. G. Röhrle, On the modality of parabolic subgroups of linear algebraic groups, Manuscripta Math. 98(1), (1999), 9–20.

  34. J. Sangroniz, Character degrees of the Sylow p-subgroups of classical groups, in: Groups St. Andrews 2001 in Oxford, Vol. II, London Math. Soc. Lecture Note Ser., Vol. 305, Cambridge Univ. Press, Cambridge, 2003, pp. 487–493.

  35. J. Sangroniz, Characters of algebra groups and unitriangular groups, in: Finite Groups 2003, Walter de Gruyter, Berlin, 2004, pp. 335–349.

  36. J.-P. Serre, The notion of complete reducibility in group theory, Moursund Lectures, Part II, University of Oregon, 1998, arXiv:0305257v1.

  37. M. C. Slattery, Computing character degrees in p-groups, J. Symbolic Comput. 2 (1986), no. 1, 51–58.

  38. T. A. Springer, The unipotent variety of a semi-simple group, in: Algebraic Geometry, Internat. Colloq., Tata Inst. Fund. Res., Bombay, 1968, Oxford Univ. Press, London, 1969, pp. pp. 373–391.

  39. T. A. Springer, R. Steinberg, Conjugacy classes, in: Seminar on Algebraic Groups and Related Finite Groups, Lecture Notes in Mathematics, Vol. 131, Springer-Verlag, Berlin, 1970, pp. 167–266.

  40. J. Thompson, k(U n (F q )), manuscript.

  41. A. Vera-López, J. M. Arregi, Conjugacy classes in unitriangular matrices, Linear Algebra Appl. 370 (2003), 85–124.

  42. Э. Б. Винберг, Сложность действий редуктивных групп, Функц. анализ и его прилож. 20 (1986), no. 1, 1–13. Engl. transl.: Ѐ. B. Vinberg, Complexity of action of reductive groups, Funct. Anal. Appl. 20 (1986), no. 1, 1–11.

  43. Э. Б. Винберг, В. Л. Попов, Теори инварианmов, Итоги науки и техн., Соврем. пробл. матем., фундам. направл., т. 55, Алгебраическая геомеmрия–4, ВИНИТИ, М., 1989, стр. 137–314. Engl. transl.: V. L. Popov, Ѐ. B. Vinberg, In variant Theory, in: Algebraic Geometry, IV, Encyclopaedia of Mathematical Sciences, Vol. 55, Springer-Verlag, Berlin, 1994, pp. 123–284.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to SIMON M. GOODWIN.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

GOODWIN, S.M., MOSCH, P. & RÖHRLE, G. ON THE COADJOINT ORBITS OF MAXIMAL UNIPOTENT SUBGROUPS OF REDUCTIVE GROUPS. Transformation Groups 21, 399–426 (2016). https://doi.org/10.1007/s00031-015-9318-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00031-015-9318-9

Keywords

Navigation