Abstract
Let G be a connected reductive complex algebraic group acting on a smooth complete complex algebraic variety X. We assume that X is a regular embedding, a condition satisfied in particular by smooth toric varieties and flag varieties. For any set D of G-stable prime divisors, we study the action on X of the group Aut°(X, D), the connected automorphism group of X stabilizing all elements of D. We determine a Levi subgroup A(X, D) of Aut°(X, D), and also relevant invariants of X as a spherical A(X, D)-variety. As a byproduct, we obtain a complete description of the inclusion relation between closures of A(X, D)-orbits on X.
Similar content being viewed by others
References
F. Bien, M. Brion, Automorphisms and local rigidity of regular varieties, Compositio Math. 104 (1996), no. 1, 1–26.
E. Bifet, C. De Concini, C. Procesi, Cohomology of regular embeddings, Adv. in Math. 82 (1990), 1–34.
P. Bravi, D. Luna, An introduction to wonderful varieties with many examples of type F4, J. Algebra 329 (2011), 4–51.
M. Brion, Groupe de Picard et nombres caractéristiques des variétés sphériques, Duke Math. J. 58 (1989), no. 2, 397–424.
M. Brion, Vers une généralisation des espaces symétriques, J. Algebra 134 (1990), no. 1, 115–143.
M. Brion, Variétés sphériques, http://www-fourier.ujf-grenoble.fr/∼mbrion/spheriques.ps.
M. Brion, The total coordinate ring of a wonderful variety, J. Algebra 313 (2007), no. 1, 61–99.
M. Brion, F. Pauer, Valuations des espaces homogènes sphériques, Comment. Math. Helv. 62 (1987), no. 2, 265–285.
M. Demazure, Sous-groupes algébriques de rang maximum du groupe de Cremona, Ann. Sci. École Norm. Sup. 3, (1970), no. 4, 507–588.
M. Demazure, Automorphismes et déformations des variétés de Borel, Invent. Math. 39 (1977), no. 2, 179–186.
V. Ginzburg, Admissible modules on a symmetric space, Astérisque 173–174 (1989), 199–255.
F. Knop, The Luna-Vust theory of spherical embeddings, in: Proceedings of the Hyderabad Conference on Algebraic Groups (Hyderabad, 1989), Manoj Prakashan, Madras, 1991, pp. 225–249.
F. Knop, The assymptotic behaviour of invariant collective motion, Invent. Math. 114 (1994), 309–328.
F. Knop, Automorphisms, root systems, and compactifications of homogeneous varieties, J. Amer. Math. Soc. 9 (1996), no. 1, 153–174.
F. Knop, H. Kraft, D. Luna, T. Vust, Local properties of algebraic group actions, in: Algebraische Transformationsgruppen und Invariantentheorie, DMV-Seminar, Bd. 13, Birkhäuser Verlag, Basel, 1989, pp. 63–76.
F. Knop, H. Kraft, T. Vust, The Picard group of a G-variety, in: Algebraische Transformationsgruppen und Invariantentheorie, DMV-Seminar, Bd. 13, Birkhäuser Verlag, Basel, 1989, pp. 77–87.
D. Luna, Variétés sphériques de type A, Inst. Hautes Études Sci. Publ. Math. 94 (2001), 161–226.
T. Oda, Convex Bodies and Algebraic Geometry: An Introduction to Toric Varieties, Springer-Verlag, New York, 1988.
G. Pezzini, Automorphisms of wonderful varieties, Transform. Groups 14 (2009), no. 3, 677–694.
B. Wasserman, Wonderful varieties of rank two, Transform. Groups 1 (1996), no. 4, 375–403.
Author information
Authors and Affiliations
Corresponding author
Additional information
*Partially supported by the DFG Schwerpunktprogramm 1388 — Darstellungstheorie.
Rights and permissions
About this article
Cite this article
PEZZINI, G. ON REDUCTIVE AUTOMORPHISM GROUPS OF REGULAR EMBEDDINGS. Transformation Groups 20, 247–289 (2015). https://doi.org/10.1007/s00031-015-9304-2
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00031-015-9304-2