Skip to main content
Log in

EXTENSIONS AND BLOCK DECOMPOSITIONS FOR FINITE-DIMENSIONAL REPRESENTATIONS OF EQUIVARIANT MAP ALGEBRAS

  • Published:
Transformation Groups Aims and scope Submit manuscript

Abstract

Suppose a finite group acts on a scheme X and a finite-dimensional Lie algebra g. The associated equivariant map algebra is the Lie algebra of equivariant regular maps from X to g. The irreducible finite-dimensional representations of these algebras were classified in [NSS12], where it was shown that they are all tensor products of evaluation representations and one-dimensional representations.

In the current paper, we describe the extensions between irreducible finite-dimensional representations of an equivariant map algebra in the case that X is an affine scheme of finite type and g is reductive. This allows us to also describe explicitly the blocks of the category of finite-dimensional representations in terms of spectral characters, whose definition we extend to this general setting. Applying our results to the case of generalized current algebras (the case where the group acting is trivial), we recover known results but with very different proofs. For (twisted) loop algebras, we recover known results on block decompositions (again with very different proofs) and new explicit formulas for extensions. Finally, specializing our results to the case of (twisted) multiloop algebras and generalized Onsager algebras yields previously unknown results on both extensions and block decompositions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. F. Atiyah, I. G. Macdonald, Introduction to Commutative Algebra, Addison-Wesley, Reading, Mass., 1969. Russian transl.: M. Атья, И. Макдональд, Введение в коммуmаmиую алгебру, Мир, М., 1972.

  2. N. Bourbaki, Éléments de Mathématique. Fasc. XXVII. Algèbre Commutative, Chap. 1: Modules Plats, Chap. 2: Localisation, Actualités Scientifiques et Industrielles, No. 1290, Herman, Paris, 1961. Russian transl.: Н. Бурбаки, Коммуmаmивная алгебра, Мир, M., 1971.

  3. N. Bourbaki. Éléments de Mathématique. Fasc. XXVI. Groupes et Algèbres de Lie, Chap. I: Algèbres de Lie, Seconde éd., Actualités Scientifiques et Industrielles, No. 1285, Paris, Hermann, 1971. Russian transl.: Н. Бурбаки, Груnnыи алгебры Ли, Мир, M., 1976.

  4. N. Bourbaki. Éléments de Mathématique. Fasc. XXXVIII, Groupes et Algèbres de Lie, Chap. VII: Sous-Algèbres de Cartan, Éements Réguliers, Chap. VIII: Algèbres de Lie Semi-Simples Déployées, Actualités Scientifiques et Industrielles, No. 1364. Paris, Hermann, 1975. Russian transl.: Н. Бурбаки, Груnnыи алгебры Ли, Мир, M., 1978.

  5. N. Bourbaki. Éléments de Mathématique. Groupes et Algèbres de Lie, Chap. 4, 5 et 6, Paris, Masson, 1981.

  6. N. Bourbaki. Éléments de Mathématique. Algèbre Commutative, Chap. 5 à 7, reprint, Paris, Masson, 1985.

  7. V. Chari, G. Fourier, T. Khandai, A categorical approach to Weyl modules, Transform. Groups 15 (2010), no. 3, 517–549.

    Article  MATH  MathSciNet  Google Scholar 

  8. V. Chari, J. Greenstein, An application of free Lie algebras to polynomial current algebras and their representation theory, in: Infinitedimensional Aspects of Representation Theory and Applications, Contemp. Math., Vol. 392, Amer. Math. Soc., Providence, RI, 2005, pp. 15–31.

  9. V. Chari, A. A. Moura, Spectral characters of finite-dimensional representations of affine algebras, J. Algebra 279 (2004), no. 2, 820–839.

    Article  MATH  MathSciNet  Google Scholar 

  10. A. Fialowski, F. Malikov, Extensions of modules over loop algebras, Amer. J. Math. 116 (1994), no. 5, 1265–1281.

    Article  MATH  MathSciNet  Google Scholar 

  11. Д. Б. фукс, Когомолгии бесконмерных алгебр Ли, Наука, M., 1984. Engl. transl.: D. B. Fuks, Cohomology of Infinite-Dimensional Lie Algebras, Contemporary Soviet Mathematics, Consultants Bureau, New York, 1986.

  12. R. Goodman, N. R. Wallach, Symmetry, Representations, and Invariants, Graduate Texts in Mathematics, Vol. 255, Springer, Dordrecht, 2009.

  13. S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces, Graduate Studies in Mathematics, Vol. 34, corrected reprint of the 1978 original, American Mathematical Society, Providence, RI, 2001.

  14. G. Hochschild, J.-P. Serre, Cohomology of Lie algebras, Ann. of Math. (2) 57 (1953), 591–603.

  15. J. E. Humphreys, Introduction to Lie Algebras and Representation Theory, Graduate Texts in Mathematics, Vol. 9, Springer-Verlag, New York, 1972. Russian transl.: Дж. Хамфрис, Введение в mеорию алгебр Ли, и, их nредсmавлений, МЦНМО, M., 2003.

  16. J. C. Jantzen, Representations of Algebraic Groups, 2nd ed., Mathematical Surveys and Monographs, Vol. 107, American Mathematical Society, Providence, RI, 2003.

  17. V. G. Kac, Infinite-Dimensional Lie Algebras, 3rd ed, Cambridge University Press, Cambridge, 1990. Russian transl.: В. Кац, Бесконечномерные, алгебры Ли, Мир, M., 1993.

  18. R. Kodera, Extensions between finite-dimensional simple modules over a generalized current Lie algebra, Transform. Groups 15 (2010), no. 2, 371–388.

    Article  MATH  MathSciNet  Google Scholar 

  19. S. Kumar, Kac-Moody Groups, their Flag Varieties and Representation Theory, Progress in Mathematics, Vol. 204, Birkhäuser Boston, Boston, MA, 2002.

  20. M. Lau, Representations of multiloop algebras, Pacific J. Math. 245 (2010), no. 1, 167–184.

    Article  MATH  MathSciNet  Google Scholar 

  21. E. Neher, A. Savage, P. Senesi, Irreducible finite-dimensional representations of equivariant map algebras, Trans. Amer. Math. Soc. 364 (2012), no. 5, 2619-2646.

    Article  MATH  MathSciNet  Google Scholar 

  22. S.-s. Roan, Onsagers algebra, loop algebra and chiral Pots model, Max- Planck-Institut preprint MPI/91-70, 1991.

  23. Séminaire Sophus Lie de l’Ecole Normale Supérieure, 1954/1955. Théorie des Algèbres de Lie. Topologie des Groupes de Lie Secrétariat mathématique, 11 rue Pierre Curie, Paris, 1955. Russian transl.: Теория алгебр Ли. Тоnология груnn Ли. СеминарСофус Ли”, ИЛ, M., 1962.

  24. P. Senesi, The block decomposition of finite-dimensional representations of twisted loop algebras, Pacific J. Math. 244 (2010), no. 2, 335–357.

    Article  MATH  MathSciNet  Google Scholar 

  25. R. Steinberg, Lectures on Chevalley Groups, Yale University, New Haven, 1968. Russian transl.: Р. Стейнберг, Лекции о груnnах Шевалле, Мир, M., 1975.

  26. C. A. Weibel, An Introduction to Homological Algebra, Cambridge Studies in Advanced Mathematics, Vol. 38, Cambridge University Press, Cambridge, 1994.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ALISTAIR SAVAGE.

Additional information

*Supported by an NSERC Discovery Grant.

**Supported by an NSERC Discovery Grant.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

NEHER, E., SAVAGE, A. EXTENSIONS AND BLOCK DECOMPOSITIONS FOR FINITE-DIMENSIONAL REPRESENTATIONS OF EQUIVARIANT MAP ALGEBRAS. Transformation Groups 20, 183–228 (2015). https://doi.org/10.1007/s00031-015-9300-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00031-015-9300-6

Keywords

Navigation