Skip to main content
Log in

THE HIDDEN SEMI-INVARIANTS GENERATORS OF AN ALMOST-FROBENIUS BIPARABOLIC

  • Published:
Transformation Groups Aims and scope Submit manuscript

Abstract

Let \( \mathfrak{a} \) be an algebraic Lie algebra and A its adjoint group. One calls \( \mathfrak{a} \) Frobenius if A has a dense orbit in \( \mathfrak{a} \) *. In this case the algebra Sy(\( \mathfrak{a} \)) spanned by the A semi-invariant polynomials on \( \mathfrak{a} \) * is not reduced to scalars and is polynomial. Again d := dim a is even and after Ooms [27] the generators all appear as factors of the coe_cient of ^d \( \mathfrak{a} \) in the d = 2-th power of the Poisson bivector of \( \mathfrak{a} \).

Though appealing, this result does not give the weights of the generators, nor their degrees. In the present work we compute these weights and degrees in the case when \( \mathfrak{a} \) is a Frobenius biparabolic subalgebra \( \mathfrak{q} \) of a simple Lie algebra \( \mathfrak{g} \). These results are relatively easy consequences of our earlier work on biparabolic subalgebras [7], [16], [18], except for the question of the existence of \hidden generators". The latter have squares which can be obtained by a general construction using the Hopf dual U(\( \mathfrak{q} \)) of U(\( \mathfrak{q} \)), yet are themselves not easily proven to exist. These \hidden generators" only occur outside types A and C.

To construct these hidden generators, the notion of a more general almost-Frobenius biparabolic subalgebra is introduced. It is shown that Sy(\( \mathfrak{a} \)) is polynomial if q is an almost-Frobenius biparabolic and may itself have \hidden generators" outside types A and C. However, it is possible to construct these hidden generators through a rather precise description of the generators of an almost-Frobenius biparabolic subalgebra of a simple Lie algebra of type A.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Bourbaki, Éléments de Mathématique, Groupes et Algébres de Lie, Chap. 4, 5, 6, Masson, Paris, 1981.

  2. V. Coll, A. Giaquinto, C. Magnant, Meanders and Frobenius seaweed Lie algebras, J. Gen. Lie Theory Appl. 5 (2011), Art. ID G110103, 7pp.

  3. L. Delvaux, E. Nauwelaerts, A. I. Ooms, On the semicenter of a universal enveloping algebra, J. Algebra 94 (1985), no. 2, 324-346.

    Article  MATH  MathSciNet  Google Scholar 

  4. V. Dergachev, A. Kirillov, Index of Lie algebras of seaweed type, J. Lie Theory 10 (2000), no. 2, 331-343.

    MATH  MathSciNet  Google Scholar 

  5. J. Dixmier, Sur les algébres enveloppantes de \( \mathfrak{s} \) l(n; \( \mathbb{C} \)) et af(n; \( \mathbb{C} \)), Bull. Sci. Math. (2) 100 (1976), no. 1, 57-95.

  6. J. Dixmier, Algébres Enveloppantes, Cahiers Scientifiques, Fasc. XXXVII. Gauthier-Villars Éditeur, Paris-Brussels-Montreal, Que., 1974. Russian transl.: Ж. Diksm ~ e, Universal ~ nye ob_rtyva_wie algebry, Mir, M., 1978.

  7. F. Fauquant-Millet, A. Joseph, Semi-centre de l'algébre enveloppante d'une sous-algébre parabolique d'une algébre de Lie semi-simple, Ann. Sci. École Norm. Sup. (4) 38 (2005), no. 2, 155-191.

  8. F. Fauquant-Millet, A. Joseph, La somme dans faux degrés − un mystére en théorie des invariants, Adv. Math. 217 (2008), no. 4, 1476-1520.

    Article  MATH  MathSciNet  Google Scholar 

  9. F. Fauquant-Millet, A. Joseph, Adapted pairs in type A and regular nilpotent elements, arXiv:1306.0529.

  10. I. Heckenberger, private communication.

  11. A. Joseph, Second commutant theorems in enveloping algebras, Amer. J. Math. 99 (1977), no. 6, 1167-1192.

    Article  MATH  MathSciNet  Google Scholar 

  12. A. Joseph, A preparation theorem for the prime spectrum of a semisimple Lie algebra, J. Algebra 48 (1977), no. 2, 241-289.

    Article  MATH  MathSciNet  Google Scholar 

  13. A. Joseph, Orbital varietes of the minimal orbit, Ann. Sci. École Norm. Sup. (4) 31 (1998), no. 1, 17-45.

  14. A. Joseph, The enigma of the missing invariants on the nilradical of a Borel, Bull. Sci. Math. 128 (2004), no. 6, 433-446.

    Article  MATH  MathSciNet  Google Scholar 

  15. A. Joseph, Parabolic actions in type A and their eigenslices, Transform. Groups 12 (2007), no. 3, 515-547.

    Article  MATH  MathSciNet  Google Scholar 

  16. A. Joseph, On semi-invariants and index for biparabolic (seaweed) algebras. I, J. Algebra 305 (2006), no. 1, 487-515.

    Article  MATH  MathSciNet  Google Scholar 

  17. A. Joseph, A slice theorem for truncated parabolics of index one and the Bezout equation, Bull. Sci. Math. 131 (2007), no. 3, 276-290.

    Article  MATH  MathSciNet  Google Scholar 

  18. A. Joseph, On semi-invariants and index for biparabolic (seaweed) algebras. II, J. Algebra 312 (2007), no. 1, 158-193.

    Article  MATH  MathSciNet  Google Scholar 

  19. A. Joseph, Slices for biparabolic coadjoint actions in type A, J. Algebra 319 (2008), no. 12, 5060-5100.

    Article  MATH  MathSciNet  Google Scholar 

  20. A. Joseph, Compatible adapted pairs and a common slice theorem for some centralizers, Transform. Groups 13 (2008), nos. 3{4, 637-669.

  21. A. Joseph, An algebraic slice in the coadjoint space of the Borel and the Coxeter element, Adv. Math. 227 (2011), no. 1, 522-585.

    Article  MATH  MathSciNet  Google Scholar 

  22. A. Joseph, The integrality of the spectrum of an adapted pair, arXiv:1402.4681.

  23. A. Joseph, D. Shafrir, Polynomiality of invariants, unimodularity and adapted pairs, Transform. Groups 15 (2010), no. 4, 851-882.

    Article  MATH  MathSciNet  Google Scholar 

  24. B. Kostant, Lie group representations on polynomial rings, Bull. Amer. Math. Soc. 69 (1963), 518-526.

    Article  MATH  MathSciNet  Google Scholar 

  25. S. Kumar, A refinement of the PRV conjecture, Invent. Math. 97 (1989), no. 2, 305-311.

    Article  MATH  MathSciNet  Google Scholar 

  26. A. I. Ooms, Computing invariants and semi-invariants by means of Frobenius Lie algebras, J. Algebra 321 (2009), no. 4, 1293-1312.

    Article  MATH  MathSciNet  Google Scholar 

  27. A. I. Ooms, The Poisson center and polynomial, maximal Poisson commutative subalgebras, especially for nilpotent Lie algebras of dimension at most seven, J. Algebra 365 (2012), 83-113.

    Article  MATH  MathSciNet  Google Scholar 

  28. A. I. Ooms, M. Van den Bergh, A degree inequality for Lie algebras with a regular Poisson semi-center, J. Algebra 323 (2010), no. 2, 305-322.

    Article  MATH  MathSciNet  Google Scholar 

  29. D. Panyushev, A. Premet, O. Yakimova, On symmetric invariants of centralisers in reductive Lie algebras, J. Algebra 313 (2007), no. 1, 343-391.

    Article  MATH  MathSciNet  Google Scholar 

  30. K. R. Parthasarathy, R. Ranga Rao, V. S. Varadarajan, Representations of complex semi-simple Lie groups and Lie algebras, Annals of Math. (2) 85 (1967), 383-429.

  31. M. Raϊs, L'indice des produits semi-directs E хρ \( \mathfrak{g} \), C. R. Acad. Sci. Paris S_er. A{B 287 (1978), no. 4, A195-A197.

  32. M. Rosenlicht, A remark on quotient spaces, An. Acad. Brasil. Ci. 35 (1963), 487-489.

    MATH  MathSciNet  Google Scholar 

  33. P. Tauvel, R. W. T. Yu, Sur l'indice de certaines algébres de Lie, Ann. Inst. Fourier (Grenoble) 54 (2004), no. 6, 1793-1810.

    Article  MATH  MathSciNet  Google Scholar 

  34. O. Yakimova, A counterexample to Premet's and Joseph's conjectures, Bull. Lond. Math. Soc. 39 (2007), no. 5, 749-754.

    Article  MATH  MathSciNet  Google Scholar 

  35. O. Yakimova, One-parameter contractions of Lie − Poisson brackets, J. Eur. Math. Soc. 16 (2014), no. 2, 387-407.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ANTHONY JOSEPH.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

JOSEPH, A. THE HIDDEN SEMI-INVARIANTS GENERATORS OF AN ALMOST-FROBENIUS BIPARABOLIC. Transformation Groups 19, 735–778 (2014). https://doi.org/10.1007/s00031-014-9273-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00031-014-9273-x

Keywords

Navigation