Transformation Groups

, Volume 19, Issue 1, pp 289–302 | Cite as

ANDREI ZELEVINSKY, 1953–2013

Article
  • 290 Downloads

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [R1]
    A. Zelevinsky’s blog, http://avzel.blogspot.com/.
  2. [R2]
  3. [R3]
    Andrei Zelevinsky”, Wikipedia, The Free Encyclopedia, http://en.wikipedia.org/wiki/Andrei_Zelevinsky.
  4. [R4]
    I. G. Macdonald, Symmetric Functions and Hall Polynomials, 2nd ed., with contributions by A. Zelevinsky, Oxford University Press, New York, 1995.Google Scholar
  5. [R5]
  6. [R6]
    В. Васильев, Ф. Петров, В. Ретах, А. Браверман, Н. Цилевич, Он учил нас математике и радости жизни, Троицкий вариант, 23.04.2013. [V. Vasiliev, F. Petrov, V. Retakh, A. Braverman, N. Tsilevich, He taught us mathematics and the joy of life, Troitskiĭ Variant, 23.04.2013 (in Russian).]Google Scholar

Publications by Andrei Zelevinsky

  1. ᅟ.

This publication list is based on the one posted on A. Zelevinsky’s website [R2].

  1. ᅟ.

Books

  1. [B1]
    Representations of Finite Classical Groups. A Hopf Algebra Approach, Lecture Notes in Mathematics, Vol. 869, Springer-Verlag, Berlin, 1981.Google Scholar
  2. [B2]
    Discriminants, Resultants, and Multidimensional Determinants (with I. M. Gelfand and M. M. Kapranov), Birkhäuser Boston, Boston, MA, 1994. Reprinted in 2008.Google Scholar

Principal Mathematical Papers

  1. [1]
    Обобщенные преобразования Радона в пространствах функций на грассмановых многообразиях над конечным полем, УМН 28 (1973), no. 5(173), 243-244. [Generalized Radon transform for Grassmannians over finite fields, Uspehi Mat. Nauk 28 (1973), no. 5(173), 243-244 (in Russian)].Google Scholar
  2. [2]
    Об интегральной геометрии над конечных полем (с Ф. Б. Жорницким), УМН 28 (1973), no. 6(174), 207-208. [Integral geometry over a finite field (with A. B. Zhornitsky), Uspehi Mat. Nauk 28 (1973), no. 6 (174), 207-208 (in Russian).]Google Scholar
  3. [3]
    Представления группы SL(2, F q), гбе q = 2n (с Г. С. Наркунской), Функц. анализ и его прил. 8 (1974), no. 3, 75-76. Engl. transl.: Representations of the group SL(2, F q), where q = 2n (with G. Narkounskaia), Funct. Anal. Appl. 8 (1974), no. 3, 256-257.Google Scholar
  4. [4]
    Induced representations of reductive p-adic groups. I (with I. N. Bernstein), Ann. Sci. Éc. Norm. Sup. (4) 10 (1977), no. 4, 441-472.Google Scholar
  5. [5]
    Induced representations of reductive p-adic groups. II. On irreducible representations of GL(n), Ann. Sci. Éc. Norm. Sup. (4) 13 (1980), no. 2, 165-210.Google Scholar
  6. [6]
    A generalization of the Littlewood-Richardson rule and the Robinson-Schensted-Knuth correspondence, J. Algebra 69 (1981), no. 1, 82-94.Google Scholar
  7. [7]
    р-адический аналог гипотезы Каждана-Люстига, Функц. анализ и его прил. 15 (1981), no. 2, 9-21. Engl. transl.: A p-adic analogue of the Kazhdan-Lusztig conjecture, Funct. Anal. Appl. 15 (1981), no. 2, 83-92.Google Scholar
  8. [8]
    Малые разрешения особенностей многообразий Шуберта, Функц. анализ и его прил. 17 (1983), no. 2, 75-77. Engl. transl.: Small resolutions of singularities of Schubert varieties in Grassmannians, Funct. Anal. Appl. 17 (1983), no. 2, 142-144.Google Scholar
  9. [9]
    Characters of GL(n, F q) and Hopf algebras (with T. A. Springer), J. London Math. Soc. (2) 30 (1984), no. 1, 27-43.Google Scholar
  10. [10]
    Модели представлений классических групп и их скрытые симметрии (с И. М. Гельфандом), Функц. анализ и его прил. 18 (1984), no. 3, 14-31. Engl. transl.: Representation models of classical groups and their hidden symmetries (with I. M. Gelfand), Funct. Anal. Appl. 18 (1984), no. 3, 183-198.Google Scholar
  11. [11]
    Два замечания о градуированных нильпотентных классах, УМН 40 (1985), вып. 1(241), 199-200. Engl. transl.: Two remarks on graded nilpotent classes, Russian Math. Surveys 40 (1985), no. 1, 249-250.Google Scholar
  12. [12]
    Representation models for classical groups and their higher symmetries (with I. M. Gelfand), in: The Mathematical Heritage of Élie Cartan (Lyon, 1984), Astérisque, Numero Hors Serie, 1985, pp. 117-128.Google Scholar
  13. [13]
    Multiplicities and good bases for gln (with I. M. Gelfand), in: Group Theoretical Methods in Physics, Vol. II (Yurmala, 1985), VNU Sci. Press, Utrecht, 1986, pp. 147-159.Google Scholar
  14. [14]
    Canonical basis in irreducible representations of gl3 and its applications (with I. M. Gelfand), in: Group Theoretical Methods in Physics, Vol. II (Yurmala, 1985), VNU Sci. Press, Utrecht, 1986, pp. 127-146.Google Scholar
  15. [15]
    Алгебраические и комбинаторные аспекты общей теории гипергеометрических функций (с И. М. Гелъфандом), Функц. анализ и его прил. 20 (1986), no. 3, 17-34. Engl. transl.: Algebraic and combinatorial aspects of the general theory of hypergeometric functions (with I. M. Gelfand), Funct. Anal. Appl. 20 (1986), no. 3, 183-197.Google Scholar
  16. [16]
    Общие гипергеометрические функции на комплексных грассманианах (с В. А. Васильевым и И. М. Гельфандом), Функц. анализ и его прил. 21 (1987), no. 1, 23-38. Engl. transl.: General hypergeometric functions on complex Grassmannians (with V. A. Vasiliev and I. M. Gelfand), Funct. Anal. Appl. 21 (1987), no. 1, 19-31.Google Scholar
  17. [17]
    Резольвенты, дуальные пары и формулы для характеров, Функц. анализ и его прил. 21 (1987), no. 2, 74-75. Engl. transl.: Resolutions, dual pairs, and character formulas, Funct. Anal. Appl. 21 (1987), no. 2, 152-154.Google Scholar
  18. [18]
    Голономные системы уравнений и ряды гипергеометрического типа (с И. М. Гельфандом и М. И. Граевым), ДАН СССР 295 (1987), 14-19. Engl. transl.: Holonomic systems of equations and series of hypergeometric type (with I. M. Gelfand and M. I. Graev), Soviet Math. Dokl. 36 (1988), no. 1, 5-10.Google Scholar
  19. [19]
    Конфигурации вещественных гиперплоскостей и соответ ствующая функция разбиения (с Т. В. Алексеевской и И. М. Гельфандом), ДАН СССР 297 (1987), no. 6, 1289-1293. Engl. transl.: Arrangements of real hyperplanes and related partition function (with T. V. Alekseevskaya and I. M. Gelfand), Soviet Math. Dokl. 36 (1988), no. 3, 589-593.Google Scholar
  20. [20]
    Основное аффинное пространство и канонические базисы в неприводимых представениях группы Sp(4) (с В. С. Ретахом), ДАН СССР 300 (1988), no. 1, 31-35. Engl. transl.: The base affine space and canonical bases in irreducible representations of the group Sp(4) (with V. S. Retakh), Soviet Math. Dokl. 37 (1988), no. 3, 618-622.Google Scholar
  21. [21]
    Инволюции в схетах Гельфанда-Цетлина и кратности в косых GL(n)-модулях (с А. Д. Беренштейном), ДАН СССР 300 (1988), no. 6, 1291-1294. Engl. transl.: Involutions on Gelfand-Tsetlin patterns and multiplicities in skew GL(n)-modules (with A. D. Berenstein), Soviet Math. Dokl. 37 (1988), no. 3, 799-802.Google Scholar
  22. [22]
    Гипергеометрические функции и торические многообразия (с И. М. Гельфандом и М. М. Капрановым), Функц. анализ и его прил. 23 (1989), no. 2, 12-26. Engl. transl.: Hypergeometric functions and toric varieties (with I. M. Gelfand and M. M. Kapranov), Funct. Anal. Appl. 23 (1989), no. 2, 94-106. Correction published in Funct. Anal. Appl. 27 (1993), no. 4, 295 (1994).Google Scholar
  23. [23]
    Общие гипергеометрические функции, ассоциированные с парой однородных пространств (с И. М. Гельфандом и В. В. Сергановой), ДАН СССР 304 (1989), no. 5, 1044-1049. Engl. transl.: General hypergeometric functions associated to a pair of homogeneous spaces (with I. M. Gelfand and V. V. Serganova), Soviet Math. Dokl. 39 (1989), no. 1, 182-187.Google Scholar
  24. [24]
    Проективно-двойственные многообразия и гипердетерминанты (с И. М. Гельфандом и М. М. Капрановым), ДАН СССР 305 (1989), no. 6, 1294-1298. Engl. transl.: Projectively dual varieties and hyperdeterminants (with I. M. Gelfand and M. M. Kapranov), Soviet Math. Dokl. 39 (1989), no. 2, 385-389.Google Scholar
  25. [25]
    Комбинаторная оптимизация на группах Вейля, жадные алгоритмы и обобщённые матроиды (с В. В. Сергановой), АН СССР, Научный совет по комплексн. пробл, “Кибернетика”, М., 1989, препринт. [Combinatorial optimization on Weyl groups, greedy algorithms, and generalized matroids (with V. V. Serganova), Preprint, Scientific Council for Cybernetics, Moscow, 1989 (in Russian)].Google Scholar
  26. [26]
    Geometry and combinatorics related to vector partition functions, in: Topics in Algebra, Part 2 (Warsaw, 1988), Banach Center Publ. 26, Part 2, PWN, Warsaw, 1990, 501-510.Google Scholar
  27. [27]
    Tensor product multiplicities and convex polytopes in partition space (with A. D. Berenstein), J. Geom. Phys. 5 (1988), no. 3, 453-472.Google Scholar
  28. [28]
    О дискриминантах многочленов от многих переменных (с И. М. Гельфандом и М. М. Капрановым), Функц. анализ и его прил. 24 (1990), 1-4. Engl. transl.: On discriminants of polynomials of several variables (with I. M. Gelfand and M. M. Kapranov), Funct. Anal. Appl. 24 (1990), no. 1, 1-4.Google Scholar
  29. [29]
    Дискриминанты многочленов от многих переменных и триангуляции многогранников Ньютона (с И. М. Гельфандом и М. М. Капрановым), Алгебра и анализ 2 (1990), no. 3, 1-62. Engl. transl.: Discriminants of polynomials of several variables and triangulations of Newton polytopes (with I. M. Gelfand and M. M. Kapranov), Leningrad Math. J. 2 (1991), no. 3, 449-505.Google Scholar
  30. [30]
    Когда кратность веса равна 1? (с А. Д. Беренштейном), Функц. анализ и его прил. 24 (1990), no. 4, 1-13. Engl. transl.: When is the weight multiplicity equal to 1? (with A. D. Berenstein), Funct. Anal. Appl. 24 (1990), no. 4, 259-269.Google Scholar
  31. [31]
    Newton polytopes of the classical resultant and discriminant (with I. M. Gelfand and M. M. Kapranov), Adv. Math. 84 (1990), no. 2, 237-254.Google Scholar
  32. [32]
    Generalized Euler integrals and A-hypergeometric functions (with I. M. Gelfand and M. M. Kapranov), Adv. Math. 84 (1990), no. 2, 255-271.Google Scholar
  33. [33]
    Quotients of toric varieties (with M. M. Kapranov and B. Sturmfels), Math. Ann. 290 (1991), no. 4, 643-655.Google Scholar
  34. [34]
    Hypergeometric functions, toric varieties, and Newton polyhedra (with I. M. Gelfand and M. M. Kapranov), in: Special Functions (Okayama, 1990), ICM-90 Satell. Conf. Proc., Springer, Tokyo, 1991, pp. 104-121.Google Scholar
  35. [35]
    Triple multiplicities for sl(r + 1) and the spectrum of the exterior algebra of the adjoint representation (with A. D. Berenstein), J. Algebraic Combin. 1 (1992), no. 1, 7-22.Google Scholar
  36. [36]
    Chow polytopes and general resultants (with M. M. Kapranov and B. Sturmfels), Duke Math. J. 67 (1992), no. 1, 189-218.Google Scholar
  37. [37]
    Hyperdeterminants (with I. M. Gelfand and M. M. Kapranov), Adv. Math. 96 (1992), no. 2, 226-263.Google Scholar
  38. [38]
    Maximal minors and their leading terms (with B. Sturmfels), Adv. Math. 98 (1993), no. 1, 65-112.Google Scholar
  39. [39]
    Combinatorics of maximal minors (with D. Bernstein), J. Algebraic Combin. 2 (1993), no. 2, 111-121.Google Scholar
  40. [40]
    String bases for quantum groups of type Ar (with A. D. Berenstein), in: I. M. Gelfand Seminar, Adv. Soviet Math. 16, Part 1, Amer. Math. Soc., Providence, RI, 1993, 51-89.Google Scholar
  41. [41]
    Multigraded resultants of Sylvester type (with B. Sturmfels), J. Algebra 163 (1994), no. 1, 115-127.Google Scholar
  42. [42]
    Simple vertices of maximal minor polytopes (with P. Santhanakrishnan), Discrete Comput. Geom. 11 (1994), no. 3, 289-309.Google Scholar
  43. [43]
    Determinantal formulas for multigraded resultants (with J. Weyman), J. Algebraic Geom. 3 (1994), no. 4, 569-597.Google Scholar
  44. [44]
    Multiplicative properties of projectively dual varieties (with J. Weyman), Manuscripta Math. 82 (1994), no. 2, 139-148.Google Scholar
  45. [45]
    Representations of quivers of type A and the multisegment duality (with H. Knight), Adv. Math. 117 (1996), no. 2, 273-293.Google Scholar
  46. [46]
    Canonical bases for the quantum group of type Ar and piecewise-linear combinatorics (with A. D. Berenstein), Duke Math. J. 82 (1996), no. 3, 473-502.Google Scholar
  47. [47]
    Singularities of hyperdeterminants (with J. Weyman), Ann. Inst. Fourier (Grenoble) 46 (1996), no. 3, 591-644.Google Scholar
  48. [48]
    Parametrizations of canonical bases and totally positive matrices (with A. D. Berenstein and S. Fomin), Adv. Math. 122 (1996), no. 1, 49-149.Google Scholar
  49. [49]
    Total positivity in Schubert varieties (with A. D. Berenstein), Comment. Math. Helv. 72 (1997), no. 1, 128-166.Google Scholar
  50. [50]
    Polyhedral realizations of crystal bases for quantized Kac-Moody algebras (with T. Nakashima), Adv. Math. 131 (1997), no. 1, 253-278.Google Scholar
  51. [51]
    A geometric characterization of Coxeter matroids (with V. V. Serganova and A. Vince), Annals of Combin. 1 (1997), no. 1, 173-181.Google Scholar
  52. [52]
    Quasicommuting families of quantum Plucker coordinates (with B. Leclerc), in: Kirillov’s Seminar on Representation Theory, Amer. Math. Soc. Transl. (2), Vol. 181, Amer. Math. Soc., Providence, RI, 1998, pp. 85-108.Google Scholar
  53. [53]
    Double Bruhat cells and total positivity (with S. Fomin), J. Amer. Math. Soc. 12 (1999), no. 2, 335-380.Google Scholar
  54. [54]
    Multiple flag varieties of finite type (with P. Magyar and J. Weyman), Adv. Math. 141 (1999), no. 1, 97-118.Google Scholar
  55. [55]
    Symplectic multiple flag varieties of finite type (with P. Magyar and J. Weyman), J. Algebra 230 (2000), no. 1, 245-265.Google Scholar
  56. [56]
    Recognizing Schubert cells (with S. Fomin), J. Algebraic Combin. 12 (2000) 37-57.Google Scholar
  57. [57]
    Totally nonnegative and oscillatory elements in semisimple groups (with S. Fomin), Proc. Amer. Math. Soc. 128 (2000), no. 12, 3749-3759.Google Scholar
  58. [58]
    Multiplicities of points on Schubert varieties in Grassmannians (with J. Rosenthal), J. Algebraic Combin. 13 (2001), no. 2, 213-218.Google Scholar
  59. [59]
    Simply-laced Coxeter groups and groups generated by symplectic transvections (with B. Shapiro, M. Shapiro, and A. Vainshtein), Michigan Math. J. 48 (2000), 531-551.Google Scholar
  60. [60]
    Tensor product multiplicities, canonical bases and totally positive varieties (with A. D. Berenstein), Invent. Math. 143 (2001), no.1, 77-128.Google Scholar
  61. [61]
    Connected components of real double Bruhat cells, Intern. Math. Res. Notices 2000, no. 21, 1131-1153.Google Scholar
  62. [62]
    Cluster algebras I: Foundations (with S. Fomin), J. Amer. Math. Soc. 15 (2002), no. 2, 497-529.Google Scholar
  63. [63]
    The Laurent phenomenon (with S. Fomin), Adv. Applied Math. 28 (2002), no. 2, 119-144.Google Scholar
  64. [64]
    Y-systems and generalized associahedra (with S. Fomin), Ann. of Math. 158 (2003), no. 3, 977-1018.Google Scholar
  65. [65]
    Polytopal realizations of generalized associahedra (with F. Chapoton and S. Fomin), Canad. Math. Bull. 45 (2002), no. 4, 537-566.Google Scholar
  66. [66]
    On symplectic leaves and integrable systems in standard complex semisimple Poisson-Lie groups (with M. Kogan), Intern. Math. Res. Notices IMRN 2002, no. 32, 1685-1702.Google Scholar
  67. [67]
    Generalized associahedra via quiver representations (with R. Marsh and M. Reineke), Trans. Amer. Math. Soc. 355 (2003), no. 10, 4171-4186.Google Scholar
  68. [68]
    Cluster algebras II: Finite type classification (with S. Fomin), Invent. Math. 154 (2003), no. 1, 63-121.Google Scholar
  69. [69]
    Cluster algebras III: Upper bounds and double Bruhat cells (with A. D. Berenstein and S. Fomin), Duke Math. J. 126 (2005), no. 1, 1-52.Google Scholar
  70. [70]
    Positivity and canonical bases in rank 2 cluster algebras of finite and affine types (with P. Sherman), Moscow Math. J. 4 (2004), no. 4, 947-974.Google Scholar
  71. [71]
    Quantum cluster algebras (with A. D. Berenstein), Adv. Math. 195 (2005), no. 2, 405-455.Google Scholar
  72. [72]
    Cluster algebras of finite type and positive symmetrizable matrices (with M. Barot and C. Geiss), J. London Math. Soc. 73 (2006), Part 3, 545-564.Google Scholar
  73. [73]
    Nested complexes and their polyhedral realizations, Pure Appl. Math. Q. 2 (2006), no. 3, 655-671.Google Scholar
  74. [74]
    Cluster algebras IV: Coefficients (with S. Fomin), Compos. Math. 143 (2007), 112-164.Google Scholar
  75. [75]
    Laurent expansions in cluster algebras via quiver representations (with P. Caldero), Moscow Math. J. 6 (2006), no. 3, 411-429.Google Scholar
  76. [76]
    Semicanonical basis generators of the cluster algebra of type \( \mathrm{A}_1^{(1) } \), Electron. J. Combin. 14 (2007), no. 1, Note 4.Google Scholar
  77. [77]
    Quivers with potentials and their representations I: Mutations (with H. Derksen and J. Weyman), Selecta Math., New Series 14 (2008), 59-119.Google Scholar
  78. [78]
    Cluster algebras of finite type via Coxeter elements and principal minors (with S.-W. Yang), Transform. Groups 13 (2008), no. 3-4, 855-895.Google Scholar
  79. [79]
    Quivers with potentials and their representations II: Applications to cluster algebras (with H. Derksen and J. Weyman), J. Amer. Math. Soc. 23 (2010), no. 3, 749-790.Google Scholar
  80. [80]
    On tropical dualities in cluster algebras (with T. Nakanishi), in: Algebraic Groups and Quantum groups, Contemp. Math., Vol. 565, 2012, pp. 217-226.Google Scholar
  81. [81]
    Triangular bases in quantum cluster algebras (with A. D. Berenstein), Int. Math. Res. Not. IMRN, to appear, arXiv:1206.3586.Google Scholar
  82. [82]
    Greedy elements in rank 2 cluster algebras (with K. Lee and L. Li), Selecta Math. 20 (2014), no. 1, 57-82.Google Scholar
  83. [83]
    Positivity and tameness in rank 2 cluster algebras (with K. Lee), arXiv:1303.5806.Google Scholar
  84. [84]
    Strongly primitive species with potentials I: Mutations (with D. Labardini-Fragoso), arXiv:1306.3495.Google Scholar

Surveys and Expository Articles

  1. [S1]
    Представления группы GL (n, F), где Fлокальное неархимедово поле (с И. Н. Бернштейном), УМН 31 (1976), no. 3 (189), 5-70. Engl. transl.: Representations of the group GL(n, F), where F is a local non-Archimedean field (with J. N. Bernstein), Russian Math. Surveys 31 (1976), no. 3, 1-68.Google Scholar
  2. [S2]
    Representations of contragredient Lie algebras and the Kac-Macdonald identities (with B. L. Feigin), in: Representations of Lie Groups and Lie Algebras (Budapest, 1971), Akad. Kiadó, Budapest, 1985, pp. 25-77.Google Scholar
  3. [S3]
    Chow polytopes, in: Special Differential Equations, Proceedings of the Taniguchi workshop 1991, M. Yoshida (Ed.), Department of Mathematics, Kyushu University, Fukuoka 812, Japan, 1991, pp. 176-181.Google Scholar
  4. [S4]
    Littlewood-Richardson semigroups, in: New Perspectives in Algebraic Combinatorics, MSRI Publications, Vol. 38, Cambridge University Press, 1999, pp. 337-345.Google Scholar
  5. [S5]
    Multisegment duality, canonical bases and total positivity, Doc. Math., Extra Volume ICM 1998, III, 409-417.Google Scholar
  6. [S6]
    Total positivity: tests and parametrizations (with S. Fomin), Math. Intelligencer 22 (2000), no. 1, 23-33.Google Scholar
  7. [S7]
    From Littlewood-Richardson coefficients to cluster algebras in three lectures, in: Symmetric Functions 2001: Surveys of Developments and Perspectives, NATO Sci. Ser. II Math. Phys. Chem., Vol. 74, Kluwer Acad. Publ., Dordrecht, 2002, pp. 253-273.Google Scholar
  8. [S8]
    Cluster algebras: Notes for the CDM-03 conference (with S. Fomin), in: CDM 2003: Current Developments in Mathematics, International Press, 2004.Google Scholar
  9. [S9]
    Cluster algebras: origins, results and conjectures, in: Advances in Algebra Towards Millenium Problems, SAS Int. Publ., Delhi, 2005, 85-105.Google Scholar
  10. [S10]
    Quantum cluster algebras, Oberwolfach Reports, Vol. 2 (2005), no. 1, 352-355.Google Scholar
  11. [S11]
    Generalized Littlewood-Richardson coefficients, canonical bases and total positivity, in: Globus. General Mathematical Seminar, M. A. Tsfasman (Ed.), Independent University of Moscow, Moscow, 2004, pp. 147-160.Google Scholar
  12. [S12]
    Mutations for quivers with potentials, Oberwolfach Reports, Vol. 4 (2007), no. 2, 1235-1237.Google Scholar
  13. [S13]
    What is . . . a cluster algebra?, Notices Amer. Math. Soc. 54 (2007), no. 11, 1494-1495.Google Scholar
  14. [S14]
    Quiver Grassmannians and their Euler characteristics, Oberwolfach talk, May 2010, arXiv:1006.0936.Google Scholar

Research Announcements

  1. [A1]
    Классификация неприводимых некаспидальных представлений GL(n) над р-адическим полем, Функц. анализ и его прил. 11 (1977), no. 1, 67-68. Engl. transl.: Classification of irreducible noncuspidal representations of GL(n) over a p-adic field, Funct. Anal. Appl. 11 (1977), no. 1, 57-59.Google Scholar
  2. [A2]
    Кольцо представлений групп GL(n) над р-адическим полем, Функц. анализ и его прил. 11 (1977), no. 3, 78-79. Engl. transl.: Representation ring of the group GL(n) over a p-adic field, Funct. Anal. Pril. 11 (1977), no. 3, 227-229.Google Scholar
  3. [A3]
    О представлениях полной линейной и аффинной группы над конечным полем, УМН 32 (1977), no. 3(195), 159-160. [Representations of the general linear and affine groups over a finite field, Uspehi Mat. Nauk 32 (1977), no. 3 (195), 159-160 (in Russian).]Google Scholar
  4. [A4]
    Многогранники в пространстве схем и канонический базис в неприводимых представлениях gl(3) (с И. М. Гельфандом), Функц. анализ и его прил. 19 (1985), no. 2, 72-75. Engl. transl.: Convex polytopes in the pattern space and canonical basis in irreducible representations of gl(3) (with I. M. Gelfand), Funct. Anal. Pril. 19 (1985), no. 2, 141-144.Google Scholar
  5. [A5]
    Поведение общих гипергеометрических функций в комплексной области (с И. М. Гельфандом и В. А. Васильевым), ДАН СССР 290 (1986), no. 2, 277-281. Engl. transl.: The behavior of general hypergeometric functions in a complex domain (with I. M. Gelfand and V. A. Vasiliev), Soviet Math. Dokl. 34 (1987), no. 2, 268-272.Google Scholar
  6. [A6]
    Уравнения гипергеометрического типа и многогранники Ньютона (с И. М. Гельфандом и М. М. Капрановым), ДАН СССР 300 (1988), no. 3, 529-534. Engl. transl.: Equations of hypergeometric type and Newton polytopes (with I. M. Gelfand and M. M. Kapranov), Soviet Math. Dokl. 37 (1988), no. 3, 678-682.Google Scholar
  7. [A7]
    A-дискриминанты и комплексы Кэли-Кошуля (с И. М. Гельфандом и М. М. Капрановым), ДАН СССР 307 (1989), no. 6, 1307-1311. Engl. transl.: A-discriminants and Cayley-Koszul complexes (with I. M. Gelfand and M. M. Kapranov), Soviet Math. Dokl. 40 (1990), no. 1, 239-243.Google Scholar
  8. [A8]
    Многогранники Ньютона и главные А-детерминанты (с И. М. Гельфандом и М. М. Капрановым), ДАН СССР 308 (1989), no. 1, 20-23. Engl. transl.: Newton polytopes of principal A-determinants (with I. M. Gelfand and M. M. Kapranov), Soviet Math. Dokl. 40 (1990), no. 2, 278-281.Google Scholar
  9. [A9]
    Multiple flag varieties of finite type (with P. Magyar and J.Weyman), in: Commutative Algebra, Representation Theory, and Combinatorics, D. Eisenbud, A. Martsinkovsky, J. Weyman (Eds.), Conference in honor of David Buchsbaum, Northeastern University, Boston, 1997, pp. 115-119.Google Scholar

Papers in Computational Seismology

  1. [CS1]
    Исследование мест возникновения сильных землетрясений Тихоокеанского пояса с помощью алгоритмов распознавания (с А. Д. Гвишиани, В. И. Кейлис-Бороком и В. Г. Кособоковым), Изв. АН СССР, Сер. Физика земли 9 (1978), 31-42. [The study of sites of strongest earthquakes at the Pacific Belt by pattern recognition algorithms (with A. D. Gvishiani, V. I. Keilis-Borok and V. G. Kosobokov), Izv. Akad. Nauk SSSR, Ser. Fiz. Zemli 9 (1978), 31-42 (in Russian).]Google Scholar
  2. [CS2]
    Распознавание мест возникновения сильнейших землетрясений Тихоокеанского пояса (M ≥ 8.2) (с А. Д. Гвишиани, В. И. Кейлис-Бороком и В. Г. Кособоковым), Вычислительная сейсмология (1980), вып. 13, 3-44. [Recognition of sites of strongest earthquakes at the Pacific Belt (M ≥ 8.2) (with A. D. Gvishiani, V. I. Keilis-Borok and V. G. Kosobokov), Computational Seismology (1980), no. 13, 30-43 (in Russian).]Google Scholar
  3. [CS3]
    Распознавание мест возможного возникновения сильных землятресений. XI Западные Альпы, М ≥ 5.0 (с А. И. Горшковым и Е. Я. Ранцман), Вычислительная сейсмология (1983), вып. 15, 67-73. [Recognition of possible sites of strong earthquakes XI. Western Alps, M ≥ 5.0 (with A. I. Gorshkov and E. Ya. Rantsman), Computational Seismology (1983), no. 15, 67-73 (in Russian).]Google Scholar
  4. [CS4]
    О перколяционной модели сейсмичности, Вычислительная сейсмология (1985), вып. 18, 10-24. [On a percolation model of seismicity, Computational Seismology (1985), no. 18, 10-24 (in Russian).]Google Scholar

Papers in Mathematical Education

  1. [E1]
    Многочлены Чебышева и рекуррентные соотношения (с Н. В. Васильевым), Кваит (1978), no. 1, 12-19. Engl. transl.: Chebyshev polynomials and recurrence relations (with N. B. Vasiliev), Quantum 10 (1999), no. 1, 20-26. Reprinted in: Kvant Selecta: Algebra and Analysis, II, Math. World 15, Amer. Math. Soc., Providence, RI, 1999, pp. 51-61.Google Scholar
  2. [E2]
    Диаграммы Юнга как исследовательский материал для старшеклассников, Всесоюзн. заочн. мат. школа, М., 1984, 46-51. [Young diagrams as research material for high school students, All-Union Correspondence Math. School, Moscow, 1984, 46-51 (in Russian).]Google Scholar
  3. [E3]
    Visibles revisited (with M. Bridger), College Math. J. 36 (2005), no. 4, 289-300.Google Scholar
  4. [E4]
    Remarkable recurrences, PRISM, May 24-27, 2010.Google Scholar

Memoirs and interviews

  1. [M1]
    Вспоминая Беллу Абрамовну, Матем. просв., сер. 3 (2009), no. 9, 22-29. Engl. transl.: Remembering Bella Abramovna, in: You Failed your Math Test, Comrade Einstein, M. Shifman (Ed.), World Scientific, 2005, pp. 191-195.Google Scholar
  2. [M2]
    Interview with Andrei Zelevinsky, in-cites, Thomson Scientific, March 2006, http://www.in-cites.com/scientists/AndreiZelevinksy.html.
  3. [M3]
    Remembering I. M. Gelfand, Notices Amer. Math. Soc., January 2013, 47-49.Google Scholar

Book translations by A. Zelevinsky

  1. [T1]
    Russian translation (with S. V. Kerov) of: G. James, The Representation Theory of the Symmetric Groups (Lecture Notes in Math., Vol. 682, Springer, Berlin, 1978), Мир, M., 1982.Google Scholar
  2. [T2]
    Russian translation (with additional commentary) of: I. G. Macdonald, Symmetric Functions and Hall Polynomials (Oxford Univ. Press, New York, 1979), Мир, M., 1985.Google Scholar
  3. [T3]
    Russian translation (with A. O. Radul) of: A. Pressley and G. Segal, Loop Groups (Oxford University Press, New York, 1986), Мир, M., 1990.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Personalised recommendations