Skip to main content
Log in

INVARIANT HILBERT SCHEMES AND DESINGULARIZATIONS OF QUOTIENTS BY CLASSICAL GROUPS

  • Published:
Transformation Groups Aims and scope Submit manuscript

Abstract

Let W be a finite-dimensional representation of a reductive algebraic group G. The invariant Hilbert scheme \( \mathcal{H} \) is a moduli space that classifies the G-stable closed subschemes Z of W such that the affine algebra k[Z] is the direct sum of simple G-modules with prescribed multiplicities. In this article, we consider the case where G is a classical group acting on a classical representation W and k[Z] is isomorphic to the regular representation of G as a G-module. We obtain families of examples where \( \mathcal{H} \) is a smooth variety, and thus for which the Hilbert–Chow morphism \( \gamma :\mathcal{H}\to W//G \) is a canonical desingularization of the categorical quotient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Alexeev, M. Brion, Moduli of affine schemes with reductive group action, J. Algebraic Geom. 14 (2005), 83–117.

    Article  MATH  MathSciNet  Google Scholar 

  2. T. Becker, An example of an SL2-Hilbert scheme with multiplicities, Transform. Groups 16 (2011), no. 4, 915–938.

    Article  MATH  MathSciNet  Google Scholar 

  3. A. Borel, Linear Algebraic Groups, 2nd ed., Graduate Texts in Mathematics, Vol. 126, Springer-Verlag, New York, 1991.

  4. T. Bridgeland, A. King, M. Reid, The MacKay correspondence as an equivalence of derived categories, J. Amer. Math. Soc. 14 (2001), 535–554.

    Article  MATH  MathSciNet  Google Scholar 

  5. M. Brion, Invariant Hilbert Schemes, Handbook of Moduli: Vol. I, Advanced Lectures in Mathematics 24, Fordham University, New York, 2013, 63–118.

  6. D. Eisenbud, Commutative Algebra, Graduate Texts in Mathematics, Vol. 150, Springer-Verlag, New York, 1995.

    Google Scholar 

  7. D. Eisenbud, J. Harris, The Geometry of Schemes, Graduate Texts in Mathematics, Vol. 197, Springer-Verlag, New York, 2001.

    Google Scholar 

  8. W. Fulton, J. Harris, Representation Theory, Graduate Texts in Mathematics, Vol. 129, Springer-Verlag, New York, 1991.

    Google Scholar 

  9. M. Haiman, B. Sturmfels, Multigraded Hilbert schemes, J. Algebraic Geom. 13 (2004), 725-769.

    Article  MATH  MathSciNet  Google Scholar 

  10. R. Hartshorne, Algebraic Geometry, Graduate Texts in Mathematics, Vol. 52, Springer-Verlag, New York, 1977. Russian transl.: Р. Хартсхорн, Алгебраическая геометрия, Мир, М., 1981.

  11. Y. Ito, I. Nakamura, McKay correspondence and Hilbert schemes, Proc. Japan Acad. Ser. A Math. Sci. 72 (1996), no. 7, 135-138.

    Article  MATH  MathSciNet  Google Scholar 

  12. Y. Ito, I. Nakamura, Hilbert schemes and simple singularities, in: New Trends in Algebraic Geometry (Warwick, 1996), London Math. Soc. Lecture Note Ser. 264, Cambridge Univ. Press, 1999, pp. 151-233.

  13. J. Jantzen, Representations of Algebraic Groups, 2nd ed., Mathematical Surveys and Monographs, Vol. 107, AMS, Providence, RI, 2003.

  14. H. Kraft, Geometrische Methoden in der Invariantentheorie, Aspects of Mathematics, D1., Friedr. Vieweg and Sohn, Braunschweig, 1984. Russian transl.: X. Крафт, Геометрические, методы в теории инвариантов, Мир, M., 1987.

  15. H. Kraft, G. W. Schwarz, Representations with a reduced null cone, arXiv:1112. 3634, to appear in Progress in Mathematics (Birkhäuser), a volume in honor of Nolan Wallach.

  16. M. Lehn, C. Sorger, A symplectic resolution for the binary tetrahedral group, Séminaires et Congres 24-II (2010), 427–433.

    Google Scholar 

  17. C. Procesi, Lie Groups, an Approach through Invariants and Representations, Universitext, Springer, New York, 2007.

    MATH  Google Scholar 

  18. G. W. Schwarz, M. Brion, Théorie des invariants et géométrie des variétés quotients, Travaux en cours 61, Hermann, Paris, 2000.

    Google Scholar 

  19. T. Svanes, Coherent cohomology on Schubert subschemes of flag schemes and applications, Advances in Math. 14 (1974), 369-453.

    Article  MATH  MathSciNet  Google Scholar 

  20. R. Terpereau, Schémas de Hilbert invariants et théorie classique des invariants (Ph.D. thesis), arXiv:1211.1472.

  21. R. Terpereau, Invariant Hilbert schemes and desingularizations of symplectic reductions for classical groups, to appear in Math. Z., arXiv:1303.3032.

  22. J. Weyman, Cohomology of Vector Bundles and Syzygies, Cambridge Tracts in Mathematics, Vol. 149, Cambridge University Press, 2003.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. TERPEREAU.

Rights and permissions

Reprints and permissions

About this article

Cite this article

TERPEREAU, R. INVARIANT HILBERT SCHEMES AND DESINGULARIZATIONS OF QUOTIENTS BY CLASSICAL GROUPS. Transformation Groups 19, 247–281 (2014). https://doi.org/10.1007/s00031-014-9253-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00031-014-9253-1

Keywords

Navigation