Skip to main content
Log in

Cluster algebras in algebraic lie theory

  • RESEARCH-EXPOSITORY SURVEY
  • Published:
Transformation Groups Aims and scope Submit manuscript

Abstract

We survey some recent constructions of cluster algebra structures on coordinate rings of unipotent subgroups and unipotent cells of Kac–Moody groups. We also review a quantized version of these results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Berenstein, S. Fomin, A. Zelevinsky, Parametrizations of canonical bases and totally positive matrices, Adv. Math. 122 (1996), 49–149.

    Article  MathSciNet  MATH  Google Scholar 

  2. A. Berenstein, S. Fomin, A. Zelevinsky, Cluster algebras III: Upper bounds and double Bruhat cells, Duke Math. J. 126 (2005), 1–52.

    Article  MathSciNet  MATH  Google Scholar 

  3. A. Berenstein, A. Zelevinsky, String bases for quantum groups of type A r , in: I. M. Gelfand Seminar, Adv. Soviet Math. 16, Part 1, American Mathematical Society, Providence, RI, 1993, pp. 51–89.

  4. A. Berenstein, A. Zelevinsky, Quantum cluster algebras, Adv. Math. 195 (2005), 405–455.

    Article  MathSciNet  MATH  Google Scholar 

  5. A. Buan, O. Iyama, I. Reiten, J. Scott, Cluster structures for 2-CalabiYau categories and unipotent groups, Compos. Math. 145 (2009), 1035–1079.

    Article  MathSciNet  MATH  Google Scholar 

  6. A. Buan, O. Iyama, I. Reiten, D. Smith, Mutation of cluster-tilting objects and potentials, Amer. J. Math. 133 (2011), 835–887.

    Article  MathSciNet  MATH  Google Scholar 

  7. N. Chevalier, Total positivity criteria for partial flag varieties, J. Algebra 348 (2011), 402–415.

    Article  MathSciNet  MATH  Google Scholar 

  8. L. Demonet, Categorification of skew-symmetrizable cluster algebras, Alg. Represent. Theory 14 (2011), 1087–1162.

    Article  MathSciNet  MATH  Google Scholar 

  9. H. Derksen, J. Weyman, A. Zelevinsky, Quivers with potentials and their representations I: Mutations, Selecta Math. 14 (2008), 59–119.

    Article  MathSciNet  MATH  Google Scholar 

  10. H. Derksen, J. Weyman, A. Zelevinsky, Quivers with potentials and their representations II: Applications to cluster algebras, J. Amer. Math. Soc. 23 (2010), 749–790.

    Article  MathSciNet  MATH  Google Scholar 

  11. S. Fomin, Total positivity and cluster algebras, Proceedings of the International Congress of Mathematicians, Vol. II, Hindustan Book Agency, 2010, 125–145.

  12. S. Fomin, A. Zelevinsky, Double Bruhat cells and total positivity, J. Amer. Math. Soc. 12 (1999), 335–380.

    Article  MathSciNet  MATH  Google Scholar 

  13. S. Fomin, A. Zelevinsky, Cluster algebras I: Foundations, J. Amer. Math. Soc. 15 (2002), 497–529.

    Article  MathSciNet  MATH  Google Scholar 

  14. S. Fomin, A. Zelevinsky, Cluster algebras II: Finite type classification, Invent. Math. 154 (2003), 63–121.

    Article  MathSciNet  MATH  Google Scholar 

  15. S. Fomin, A. Zelevinsky, Cluster algebras IV: Coefficients, Compos. Math. 143 (2007), 112–164.

    Article  MathSciNet  MATH  Google Scholar 

  16. S. Fomin, A. Zelevinsky, Cluster algebras: notes for the CDM-03 conference, in: Current Developments in Mathematics, 2003, Int. Press, Somerville, MA, 2003, pp. 1–34.

  17. M. Gehktman, M. Shapiro, A. Vainshtein, Cluster algebras and Poisson geometry, Moscow Math. J. 3 (2003), 899–934.

    Google Scholar 

  18. M. Gehktman, M. Shapiro, A. Vainshtein, Cluster algebras and Poisson geometry, Mathematical Surveys and Monographs, Vol. 167, American Mathematical Society, Providence, RI, 2010.

  19. C. Geiss, B. Leclerc, J. Schröer, Semicanonical bases and preprojective algebras, Ann. Scient. Éc. Norm. Sup. 38 (2005), 193–253.

    MATH  Google Scholar 

  20. C. Geiss, B. Leclerc, J. Schröer, Rigid modules over preprojective algebras, Invent. Math. 165 (2006), 589–632.

    Article  MathSciNet  MATH  Google Scholar 

  21. C. Geiss, B. Leclerc, J. Schröer, Auslander algebras and initial seeds for cluster algebras, J. London Math. Soc. 75 (2007), 718–740.

    Article  MATH  Google Scholar 

  22. C. Geiss, B. Leclerc, J. Schröer, Semicanonical bases and preprojective algebras II: A multiplication formula, Compositio Math. 143 (2007), 1313–1334.

    Article  MATH  Google Scholar 

  23. C. Geiss, B. Leclerc, J. Schröer, Cluster algebra structures and semicanonical bases for unipotent groups, arXiv:math/0703039 (2007).

  24. C. Geiss, B. Leclerc, J. Schröer, Partial flag varieties and preprojective algebras, Ann. Inst. Fourier (Grenoble) 58 (2008), 825–876.

    Article  MathSciNet  MATH  Google Scholar 

  25. C. Geiss, B. Leclerc, J. Schröer, Kac–Moody groups and cluster algebras, Adv. Math. 228 (2011), 329–433.

    Article  MathSciNet  MATH  Google Scholar 

  26. C. Geiss, B. Leclerc, J. Schröer, Generic bases of cluster algebras and the Chamber Ansatz, J. Amer. Math. Soc. 25 (2012), 21–76.

    Article  MathSciNet  MATH  Google Scholar 

  27. C. Geiss, B. Leclerc, J. Schröer, Cluster structures on quantum coordinate rings, Selecta Math. New Series, DOI 10.1007/s00029-012-0099-x, http://link.springer.com/article/10.1007/s00029-012-0099-x (July 2012), arXiv:1104.0531 (2011).

  28. И. М. Гелъфанд, В. A. Пономарëв, Моделъные алгебры и представления графов, Функц. анализ и его прилож. 13 (1979), no. 3, 1–12. Engl. transl.: I. M. Gelfand, V. A. Ponomarev, Model algebras and representations of graphs, Functional Anal. Appl. 13 (1979), no. 3, 157–166.

  29. J. Grabowski, S. Launois, Quantum cluster algebra structures on quantum Grassmannians and their quantum Schubert cells: the finite-type cases, Int. Math. Res. Not. IMRN 10 (2011), 2230–2262.

    Google Scholar 

  30. D. Happel, Triangulated Categories in the Representation Theory of Finite-Dimensional Algebras, London Mathematical Society Lecture Note Series, Vol. 119. Cambridge University Press, Cambridge, 1988.

    Book  MATH  Google Scholar 

  31. D. Hernandez, B. Leclerc, Cluster algebras and quantum affine algebras, Duke Math. J. 154 (2010), 265–341.

    Article  MathSciNet  MATH  Google Scholar 

  32. D. Hernandez, B. Leclerc, Quantum Grothendieck rings and derived Hall algebras, arXiv:1109.0862, (2011).

  33. V. Kac, D. Peterson, Regular functions on certain infinite-dimensional groups, in: Arithmetic and Geometry, Vol II, Progress in Mathematics, Vol. 36, Birkhäuser Boston, Boston, MA, 1983, pp. 141–166.

    Google Scholar 

  34. B. Keller, Cluster algebras and derived categories, arXiv:1202.4161, (2012).

  35. Y. Kimura, Quantum unipotent subgroup and dual canonical basis, Kyoto J. Math. 52 (2012), 277–331.

    Article  MathSciNet  MATH  Google Scholar 

  36. Y. Kimura, F. Qin, Graded quiver varieties, quantum cluster algebras and dual canonical basis, arXiv:1205.2066, (2012).

  37. S. Kumar, Kac–Moody Groups, their Flag Varieties and Representation Theory, Progress in Mathematics, Vol. 204, Birkhäuser Boston, Boston, MA, 2002.

  38. A. Kuniba, T. Nakanishi, J. Suzuki, T-systems and Y -systems in integrable systems, J. Phys. A 44 (2011), no. 10, 103001, 146 pp.

    Google Scholar 

  39. P. Lampe, A quantum cluster algebra of Kronecker type and the dual canonical basis, Int. Math. Res. Not. IMRN 13 (2011), 2970–3005.

    MathSciNet  Google Scholar 

  40. P. Lampe, Quantum cluster algebras of type A and the dual canonical basis, arXiv:1101.0580, (2010).

  41. G. Lusztig, Quivers, perverse sheaves, and quantized enveloping algebras, J. Amer. Math. Soc. 4 (1991), 365–421.

    Article  MathSciNet  MATH  Google Scholar 

  42. G. Lusztig, Total positivity in reductive groups, in: Lie Theory and Geometry, Progress in Mathematics, Vol. 123, Birkhäuser Boston, Boston, MA, 1994, pp. 531–568.

  43. G. Lusztig, Total positivity in partial flag manifolds, Represent. Theory 2 (1998), 70–78.

    Article  MathSciNet  MATH  Google Scholar 

  44. G. Lusztig, Semicanonical bases arising from enveloping algebras, Adv. Math. 151 (2000), 129–139.

    Article  MathSciNet  MATH  Google Scholar 

  45. H. Nakajima, Quiver varieties and cluster algebras, Kyoto J. Math. 51 (2011), 71–126.

    Article  MathSciNet  MATH  Google Scholar 

  46. C. M. Ringel, The preprojective algebra of a quiver, in: Algebras and Modules, II (Geiranger, 1996), CMS Conf. Proc. 24, Amer. Math. Soc., Providence, RI, 1998, pp. 467–480.

  47. J. Scott, Grassmannians and cluster algebras, Proc. London Math. Soc. 92 (2006), 345–380.

    Article  MathSciNet  MATH  Google Scholar 

  48. J. Scott, Block–Toeplitz determinants, chess tableaux, and the type Â1 Geiss–Leclerc–Schröer φ-map, arXiv:0707.3046, (2007).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Leclerc.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Geiss, C., Leclerc, B. & Schröer, J. Cluster algebras in algebraic lie theory. Transformation Groups 18, 149–178 (2013). https://doi.org/10.1007/s00031-013-9215-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00031-013-9215-z

Keywords

Navigation