## Abstract

This work is devoted to the theory of nil-DAHA for the root system A
_{1} and its applications to symmetric and nonsymmetric (spinor) global *q*-Whittaker functions, integrating the *q*-Toda eigenvalue problem and its Dunkl-type nonsymmetric version.

The global symmetric function can be interpreted as the generating function of the Demazure characters for dominant weights, which describe the algebraic-geometric properties of the corresponding affine Schubert varieties. Its Harish-Chandra-type asymptotic expansion appears directly related to the solution of the *q*-Toda eigenvalue problem obtained by Givental and Lee in the quantum *K*-theory of ag varieties. It provides an exact mathematical relation between the corresponding physics A-type and B-type models.

The spinor global functions extend the symmetric ones to the case of all Demazure characters (not only those for dominant weights); the corresponding Gromov−Witten theory is not known. The main result of this work is a complete algebraic theory of these functions in terms of induced modules of the core subalgebra of nil-DAHA. It is the first instance of the DAHA theory of canonical-crystal bases, quite non-trivial even for A
_{1}.

As the first part of the work, this paper is devoted mainly to the analytic aspects of our construction and the beginning of a systematic algebraic theory of nil-DAHA; the second part will be about the induced modules and their applications to the nonsymmetric global Whittaker functions.

This is a preview of subscription content, access via your institution.

## References

- [BL]
A. Braverman, M. Finkelberg,

*Semi-infinite Schubert varieties and quantum K-theory of flag manifolds*, preprint arXiv:1111.2266 (2011). - [Ch1]
I. Cherednik,

*Double Affine Hecke algebras*, London Mathematical Society Lecture Note Series, Vol. 319, Cambridge University Press, Cambridge, 2006. - [Ch2]
I. Cherednik,

*Intertwining operators of double affine Hecke algebras*, Selecta Math., New ser.**3**(1997), 459–495. - [Ch3]
I. Cherednik,

*Difference Macdonald−Mehta conjecture*, IMRN 10 (1997), 449–467. - [Ch4]
I. Cherednik,

*Toward harmonic analysis on DAHA*(*Integral formulas for canonical traces*), notes of the lecture delivered at the University of Amsterdam (May 30, 2008), http://math.mit.edu~/etingof/hadaha.pdf. - [Ch5]
I. Cherednik,

*Whittaker limits of difference spherical functions*, IMRN**20**(2009), 3793–3842, arXiv:0807.2155 (2008). - [Ch6]
I. Cherednik,

*Affine extensions of Knizhnik−Zamolodchikov equations and Lusz-tig’s isomorphisms*, in:*Special Functions*, Proceedings of the Hayashibara forum 1990, Okayama, Springer-Verlag, 1991, pp. 63–77. - [ChM]
I. Cherednik, X. Ma,

*Spherical and Whittaker functions via DAHA*I, II, preprint arXiv:0904.4324 (2009), to be published by Selecta Mathematica. - [ChO]
I. Cherednik, D. Orr,

*One-dimensional nil-DAHA and Whittaker functions*II, to appear in Transformation Groups. - [Et]
P. Etingof,

*Whittaker functions on quantum groups and q-deformed Toda operators*, in:*Differential Topology, Infinite-Dimensional Lie Algebras, and Applications*, AMS Transl. Ser. 2, Vol. 194, AMS, Providence, Rhode Island, 1999, pp. 9–25. - [FJM]
B. Feigin, E. Feigin, M. Jimbo, T. Miwa, E. Mukhin,

*Fermionic formulas for eigenfunctions of the difference Toda Hamiltonian*, Lett. Math. Phys.**88**(2009), 39–77. - [GLO]
A. Gerasimov, D. Lebedev, S. Oblezin,

*On q-deformed*\( \mathfrak{g}{{\mathfrak{l}}_{l+1 }} \)-*Whittaker function*III, Lett. Math. Phys.**97**(2011), no. 1, 1–24. - [GiL]
A. Givental, Y. P. Lee,

*Quantum K-theory on flag manifolds, finite-difference Toda lattices and quantum groups*, Inventiones Math.**151**(2003), 193–219. - [GW]
R. Goodman, N. R. Wallach,

*Conical vectors and Whittaker vectors*, J. Functional Analysis**39**(1980), 199–279. - [HO]
G. J. Heckman, E. M. Opdam,

*Root systems and hypergeometric functions*I, Comp. Math.**64**(1987), 329–352. - [Ion]
B. Ion,

*Nonsymmetric Macdonald polynomials and Demazure characters*, Duke Math. J.**116**(2003), no. 2, 299–318. - [KK]
B. Kostant, S. Kumar,

*T-Equivariant K-theory of generalized flag varieties*, J. Diff. Geom.**32**(1990), 549–603. - [LuB]
D. Lubinsky,

*On q-exponential functions for*|*q*| = 1, Canad. Math. Bull.**41**(1998), no. 1, 86–97. - [Ma]
I. Macdonald,

*Symmetric Functions and Hall Polynomials*, 2nd ed., Oxford University Press, 1999. - [Me]
M. van Meer,

*Bispectral quantum Knizhnik−Zamolodchikov equations for arbitrary root systems*, Selecta Math. (N.S.)**17**(2011), no. 1, 183–221. - [MS]
M. van Meer, J. V. Stokman,

*Double affine Hecke algebras and bispectral quantum Knizhnik−Zamolodchikov equations*, Int. Math. Res. Not.**6**, (2010) 969–1040. - [Rui]
S. Ruijsenaars,

*Systems of Calogero−Moser type*, in: Proceedings of the 1994 Banff summer school “*Particles and Fields*”, G. Semenoff, L. Vinet, eds., CRM Ser. in Math. Phys., Springer, New York, 1999, pp. 251–352. - [San]
Y. Sanderson,

*On the Connection between Macdonald polynomials and Demazure characters*, J. Alg. Comb.**11**(2000), 269–275. - [Sto]
J. Stokman,

*The c-function expansion of a basic hypergeometric function associated to root systems*, preprint arXiv:1109.0613 (2011). - [Sus]
S. Suslov,

*Another addition theorem for the q-exponential function*, J. Phys. A: Math. Gen.**33**(2000), no. 41, L375−L380. - [T]
K. Taipale,

*K-theoretic J-functions of type A flag varieties*, preprint arXiv:1110.3117 (2011). - [Wa]
N. R. Wallach,

*Real Reductive Groups*II, Academic Press, Boston, 1992.

## Author information

### Affiliations

### Corresponding author

## Additional information

Partially supported by NSF grant DMS−1101535.

## Rights and permissions

## About this article

### Cite this article

Cherednik, I., Orr, D. One-Dimensional Nil-Daha and Whittaker Functions I.
*Transformation Groups* **17, **953–987 (2012). https://doi.org/10.1007/s00031-012-9204-7

Received:

Accepted:

Published:

Issue Date:

### Keywords

- Schubert Variety
- Dominant Weight
- Whittaker Function
- Meromorphic Continuation
- Witten Invariant