Skip to main content

One-Dimensional Nil-Daha and Whittaker Functions I


This work is devoted to the theory of nil-DAHA for the root system A 1 and its applications to symmetric and nonsymmetric (spinor) global q-Whittaker functions, integrating the q-Toda eigenvalue problem and its Dunkl-type nonsymmetric version.

The global symmetric function can be interpreted as the generating function of the Demazure characters for dominant weights, which describe the algebraic-geometric properties of the corresponding affine Schubert varieties. Its Harish-Chandra-type asymptotic expansion appears directly related to the solution of the q-Toda eigenvalue problem obtained by Givental and Lee in the quantum K-theory of ag varieties. It provides an exact mathematical relation between the corresponding physics A-type and B-type models.

The spinor global functions extend the symmetric ones to the case of all Demazure characters (not only those for dominant weights); the corresponding Gromov−Witten theory is not known. The main result of this work is a complete algebraic theory of these functions in terms of induced modules of the core subalgebra of nil-DAHA. It is the first instance of the DAHA theory of canonical-crystal bases, quite non-trivial even for A 1.

As the first part of the work, this paper is devoted mainly to the analytic aspects of our construction and the beginning of a systematic algebraic theory of nil-DAHA; the second part will be about the induced modules and their applications to the nonsymmetric global Whittaker functions.

This is a preview of subscription content, access via your institution.


  1. [BL]

    A. Braverman, M. Finkelberg, Semi-infinite Schubert varieties and quantum K-theory of flag manifolds, preprint arXiv:1111.2266 (2011).

  2. [Ch1]

    I. Cherednik, Double Affine Hecke algebras, London Mathematical Society Lecture Note Series, Vol. 319, Cambridge University Press, Cambridge, 2006.

    Google Scholar 

  3. [Ch2]

    I. Cherednik, Intertwining operators of double affine Hecke algebras, Selecta Math., New ser. 3 (1997), 459–495.

    MathSciNet  MATH  Article  Google Scholar 

  4. [Ch3]

    I. Cherednik, Difference Macdonald−Mehta conjecture, IMRN 10 (1997), 449–467.

    MathSciNet  Article  Google Scholar 

  5. [Ch4]

    I. Cherednik, Toward harmonic analysis on DAHA (Integral formulas for canonical traces), notes of the lecture delivered at the University of Amsterdam (May 30, 2008),

  6. [Ch5]

    I. Cherednik, Whittaker limits of difference spherical functions, IMRN 20 (2009), 3793–3842, arXiv:0807.2155 (2008).

    Google Scholar 

  7. [Ch6]

    I. Cherednik, Affine extensions of Knizhnik−Zamolodchikov equations and Lusz-tig’s isomorphisms, in: Special Functions, Proceedings of the Hayashibara forum 1990, Okayama, Springer-Verlag, 1991, pp. 63–77.

    Google Scholar 

  8. [ChM]

    I. Cherednik, X. Ma, Spherical and Whittaker functions via DAHA I, II, preprint arXiv:0904.4324 (2009), to be published by Selecta Mathematica.

  9. [ChO]

    I. Cherednik, D. Orr, One-dimensional nil-DAHA and Whittaker functions II, to appear in Transformation Groups.

  10. [Et]

    P. Etingof, Whittaker functions on quantum groups and q-deformed Toda operators, in: Differential Topology, Infinite-Dimensional Lie Algebras, and Applications, AMS Transl. Ser. 2, Vol. 194, AMS, Providence, Rhode Island, 1999, pp. 9–25.

    Google Scholar 

  11. [FJM]

    B. Feigin, E. Feigin, M. Jimbo, T. Miwa, E. Mukhin, Fermionic formulas for eigenfunctions of the difference Toda Hamiltonian, Lett. Math. Phys. 88 (2009), 39–77.

    MathSciNet  MATH  Article  Google Scholar 

  12. [GLO]

    A. Gerasimov, D. Lebedev, S. Oblezin, On q-deformed \( \mathfrak{g}{{\mathfrak{l}}_{l+1 }} \)-Whittaker function III, Lett. Math. Phys. 97 (2011), no. 1, 1–24.

    MathSciNet  MATH  Article  Google Scholar 

  13. [GiL]

    A. Givental, Y. P. Lee, Quantum K-theory on flag manifolds, finite-difference Toda lattices and quantum groups, Inventiones Math. 151 (2003), 193–219.

    MathSciNet  MATH  Article  Google Scholar 

  14. [GW]

    R. Goodman, N. R. Wallach, Conical vectors and Whittaker vectors, J. Functional Analysis 39 (1980), 199–279.

    MathSciNet  MATH  Article  Google Scholar 

  15. [HO]

    G. J. Heckman, E. M. Opdam, Root systems and hypergeometric functions I, Comp. Math. 64 (1987), 329–352.

    MathSciNet  MATH  Google Scholar 

  16. [Ion]

    B. Ion, Nonsymmetric Macdonald polynomials and Demazure characters, Duke Math. J. 116 (2003), no. 2, 299–318.

    MathSciNet  MATH  Article  Google Scholar 

  17. [KK]

    B. Kostant, S. Kumar, T-Equivariant K-theory of generalized flag varieties, J. Diff. Geom. 32 (1990), 549–603.

    MathSciNet  MATH  Google Scholar 

  18. [LuB]

    D. Lubinsky, On q-exponential functions for |q| = 1, Canad. Math. Bull. 41 (1998), no. 1, 86–97.

    MathSciNet  MATH  Article  Google Scholar 

  19. [Ma]

    I. Macdonald, Symmetric Functions and Hall Polynomials, 2nd ed., Oxford University Press, 1999.

  20. [Me]

    M. van Meer, Bispectral quantum Knizhnik−Zamolodchikov equations for arbitrary root systems, Selecta Math. (N.S.) 17 (2011), no. 1, 183–221.

    MathSciNet  MATH  Article  Google Scholar 

  21. [MS]

    M. van Meer, J. V. Stokman, Double affine Hecke algebras and bispectral quantum Knizhnik−Zamolodchikov equations, Int. Math. Res. Not. 6, (2010) 969–1040.

    Google Scholar 

  22. [Rui]

    S. Ruijsenaars, Systems of Calogero−Moser type, in: Proceedings of the 1994 Banff summer school “Particles and Fields”, G. Semenoff, L. Vinet, eds., CRM Ser. in Math. Phys., Springer, New York, 1999, pp. 251–352.

    Google Scholar 

  23. [San]

    Y. Sanderson, On the Connection between Macdonald polynomials and Demazure characters, J. Alg. Comb. 11 (2000), 269–275.

    MathSciNet  MATH  Article  Google Scholar 

  24. [Sto]

    J. Stokman, The c-function expansion of a basic hypergeometric function associated to root systems, preprint arXiv:1109.0613 (2011).

  25. [Sus]

    S. Suslov, Another addition theorem for the q-exponential function, J. Phys. A: Math. Gen. 33 (2000), no. 41, L375−L380.

    MathSciNet  MATH  Article  Google Scholar 

  26. [T]

    K. Taipale, K-theoretic J-functions of type A flag varieties, preprint arXiv:1110.3117 (2011).

  27. [Wa]

    N. R. Wallach, Real Reductive Groups II, Academic Press, Boston, 1992.

    MATH  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Ivan Cherednik.

Additional information

Partially supported by NSF grant DMS−1101535.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cherednik, I., Orr, D. One-Dimensional Nil-Daha and Whittaker Functions I. Transformation Groups 17, 953–987 (2012).

Download citation


  • Schubert Variety
  • Dominant Weight
  • Whittaker Function
  • Meromorphic Continuation
  • Witten Invariant