Skip to main content

One-Dimensional Nil-Daha and Whittaker Functions I

Abstract

This work is devoted to the theory of nil-DAHA for the root system A 1 and its applications to symmetric and nonsymmetric (spinor) global q-Whittaker functions, integrating the q-Toda eigenvalue problem and its Dunkl-type nonsymmetric version.

The global symmetric function can be interpreted as the generating function of the Demazure characters for dominant weights, which describe the algebraic-geometric properties of the corresponding affine Schubert varieties. Its Harish-Chandra-type asymptotic expansion appears directly related to the solution of the q-Toda eigenvalue problem obtained by Givental and Lee in the quantum K-theory of ag varieties. It provides an exact mathematical relation between the corresponding physics A-type and B-type models.

The spinor global functions extend the symmetric ones to the case of all Demazure characters (not only those for dominant weights); the corresponding Gromov−Witten theory is not known. The main result of this work is a complete algebraic theory of these functions in terms of induced modules of the core subalgebra of nil-DAHA. It is the first instance of the DAHA theory of canonical-crystal bases, quite non-trivial even for A 1.

As the first part of the work, this paper is devoted mainly to the analytic aspects of our construction and the beginning of a systematic algebraic theory of nil-DAHA; the second part will be about the induced modules and their applications to the nonsymmetric global Whittaker functions.

This is a preview of subscription content, access via your institution.

References

  1. [BL]

    A. Braverman, M. Finkelberg, Semi-infinite Schubert varieties and quantum K-theory of flag manifolds, preprint arXiv:1111.2266 (2011).

  2. [Ch1]

    I. Cherednik, Double Affine Hecke algebras, London Mathematical Society Lecture Note Series, Vol. 319, Cambridge University Press, Cambridge, 2006.

    Google Scholar 

  3. [Ch2]

    I. Cherednik, Intertwining operators of double affine Hecke algebras, Selecta Math., New ser. 3 (1997), 459–495.

    MathSciNet  MATH  Article  Google Scholar 

  4. [Ch3]

    I. Cherednik, Difference Macdonald−Mehta conjecture, IMRN 10 (1997), 449–467.

    MathSciNet  Article  Google Scholar 

  5. [Ch4]

    I. Cherednik, Toward harmonic analysis on DAHA (Integral formulas for canonical traces), notes of the lecture delivered at the University of Amsterdam (May 30, 2008), http://math.mit.edu~/etingof/hadaha.pdf.

  6. [Ch5]

    I. Cherednik, Whittaker limits of difference spherical functions, IMRN 20 (2009), 3793–3842, arXiv:0807.2155 (2008).

    Google Scholar 

  7. [Ch6]

    I. Cherednik, Affine extensions of Knizhnik−Zamolodchikov equations and Lusz-tig’s isomorphisms, in: Special Functions, Proceedings of the Hayashibara forum 1990, Okayama, Springer-Verlag, 1991, pp. 63–77.

    Google Scholar 

  8. [ChM]

    I. Cherednik, X. Ma, Spherical and Whittaker functions via DAHA I, II, preprint arXiv:0904.4324 (2009), to be published by Selecta Mathematica.

  9. [ChO]

    I. Cherednik, D. Orr, One-dimensional nil-DAHA and Whittaker functions II, to appear in Transformation Groups.

  10. [Et]

    P. Etingof, Whittaker functions on quantum groups and q-deformed Toda operators, in: Differential Topology, Infinite-Dimensional Lie Algebras, and Applications, AMS Transl. Ser. 2, Vol. 194, AMS, Providence, Rhode Island, 1999, pp. 9–25.

    Google Scholar 

  11. [FJM]

    B. Feigin, E. Feigin, M. Jimbo, T. Miwa, E. Mukhin, Fermionic formulas for eigenfunctions of the difference Toda Hamiltonian, Lett. Math. Phys. 88 (2009), 39–77.

    MathSciNet  MATH  Article  Google Scholar 

  12. [GLO]

    A. Gerasimov, D. Lebedev, S. Oblezin, On q-deformed \( \mathfrak{g}{{\mathfrak{l}}_{l+1 }} \)-Whittaker function III, Lett. Math. Phys. 97 (2011), no. 1, 1–24.

    MathSciNet  MATH  Article  Google Scholar 

  13. [GiL]

    A. Givental, Y. P. Lee, Quantum K-theory on flag manifolds, finite-difference Toda lattices and quantum groups, Inventiones Math. 151 (2003), 193–219.

    MathSciNet  MATH  Article  Google Scholar 

  14. [GW]

    R. Goodman, N. R. Wallach, Conical vectors and Whittaker vectors, J. Functional Analysis 39 (1980), 199–279.

    MathSciNet  MATH  Article  Google Scholar 

  15. [HO]

    G. J. Heckman, E. M. Opdam, Root systems and hypergeometric functions I, Comp. Math. 64 (1987), 329–352.

    MathSciNet  MATH  Google Scholar 

  16. [Ion]

    B. Ion, Nonsymmetric Macdonald polynomials and Demazure characters, Duke Math. J. 116 (2003), no. 2, 299–318.

    MathSciNet  MATH  Article  Google Scholar 

  17. [KK]

    B. Kostant, S. Kumar, T-Equivariant K-theory of generalized flag varieties, J. Diff. Geom. 32 (1990), 549–603.

    MathSciNet  MATH  Google Scholar 

  18. [LuB]

    D. Lubinsky, On q-exponential functions for |q| = 1, Canad. Math. Bull. 41 (1998), no. 1, 86–97.

    MathSciNet  MATH  Article  Google Scholar 

  19. [Ma]

    I. Macdonald, Symmetric Functions and Hall Polynomials, 2nd ed., Oxford University Press, 1999.

  20. [Me]

    M. van Meer, Bispectral quantum Knizhnik−Zamolodchikov equations for arbitrary root systems, Selecta Math. (N.S.) 17 (2011), no. 1, 183–221.

    MathSciNet  MATH  Article  Google Scholar 

  21. [MS]

    M. van Meer, J. V. Stokman, Double affine Hecke algebras and bispectral quantum Knizhnik−Zamolodchikov equations, Int. Math. Res. Not. 6, (2010) 969–1040.

    Google Scholar 

  22. [Rui]

    S. Ruijsenaars, Systems of Calogero−Moser type, in: Proceedings of the 1994 Banff summer school “Particles and Fields”, G. Semenoff, L. Vinet, eds., CRM Ser. in Math. Phys., Springer, New York, 1999, pp. 251–352.

    Google Scholar 

  23. [San]

    Y. Sanderson, On the Connection between Macdonald polynomials and Demazure characters, J. Alg. Comb. 11 (2000), 269–275.

    MathSciNet  MATH  Article  Google Scholar 

  24. [Sto]

    J. Stokman, The c-function expansion of a basic hypergeometric function associated to root systems, preprint arXiv:1109.0613 (2011).

  25. [Sus]

    S. Suslov, Another addition theorem for the q-exponential function, J. Phys. A: Math. Gen. 33 (2000), no. 41, L375−L380.

    MathSciNet  MATH  Article  Google Scholar 

  26. [T]

    K. Taipale, K-theoretic J-functions of type A flag varieties, preprint arXiv:1110.3117 (2011).

  27. [Wa]

    N. R. Wallach, Real Reductive Groups II, Academic Press, Boston, 1992.

    MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ivan Cherednik.

Additional information

Partially supported by NSF grant DMS−1101535.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cherednik, I., Orr, D. One-Dimensional Nil-Daha and Whittaker Functions I. Transformation Groups 17, 953–987 (2012). https://doi.org/10.1007/s00031-012-9204-7

Download citation

Keywords

  • Schubert Variety
  • Dominant Weight
  • Whittaker Function
  • Meromorphic Continuation
  • Witten Invariant