Skip to main content
Log in

The Harish-Chandra isomorphism for reductive symmetric superpairs

  • Published:
Transformation Groups Aims and scope Submit manuscript

Abstract

We consider symmetric pairs of Lie superalgebras and introduce a graded Harish-Chandra homomorphism. Generalising results of Harish-Chandra and V. Kac, M. Gorelik, we prove that, assuming reductivity, its image is a certain explicit filtered subalgebra J(\( \mathfrak{a} \)) of the Weyl invariants on a Cartan subspace whose associated graded gr J(\( \mathfrak{a} \)) is the image of Chevalley’s restriction map on symmetric invariants. In contrast to the known cases, J(\( \mathfrak{a} \)) is in general not isomorphic to gr J(\( \mathfrak{a} \)).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Alldridge, J. Hilgert, Invariant Berezin integration on homogeneous supermani-folds, J. Lie Theory 20 (2010), no. 1, 65–91.

    MathSciNet  MATH  Google Scholar 

  2. A. Alldridge, J. Hilgert, M. R. Zirnbauer, Chevalley’s restriction theorem for reductive symmetric superpairs, J. Algebra 323 (2010), no. 4, 1159–1185.

    Article  MathSciNet  MATH  Google Scholar 

  3. S. Benayadi, Quadratic Lie superalgebras with the completely reducible action of the even part on the odd part, J. Algebra 223 (2000), no. 1, 344–366.

    Article  MathSciNet  MATH  Google Scholar 

  4. A. Borel, Semisimple Groups and Riemannian Symmetric Spaces, Texts and Readings in Mathematics, Vol. 16, Hindustan Book Agency, New Delhi, 1998.

  5. P. Deligne, J. W. Morgan, Notes on supersymmetry (following Joseph Bernstein), in: Quantum Fields and Strings: A Course for Mathematicians, Vol. 1, 2 Princeton, NJ, 1996/1997, Amer. Math. Soc., Providence, RI, 1999, pp. 41–97.

  6. R. Gangolli, V. S. Varadarajan, Harmonic Analysis of Spherical Functions on Real Reductive Groups, Ergebnisse der Mathematik, Vol. 101, Springer-Verlag, Berlin, 1988.

  7. M. Gorelik, The Kac construction of the centre of U(\( \mathfrak{g} \)) for Lie superalgebras, J. Nonlinear Math. Phys. 11 (2004), no. 3, 325–349.

    Article  MathSciNet  MATH  Google Scholar 

  8. Harish-Chandra, Spherical functions on a semisimple Lie group. I, Amer. J. Math. 80 (1958), 241–310.

  9. S. Helgason, Groups and Geometric Analysis, Pure and Applied Mathematics, Vol. 113, Academic Press, Orlando, FL, 1984.

    Google Scholar 

  10. J. Hilgert, K.-H. Neeb, An Introduction to the Structure and Geometry of Lie Groups and Lie Algebras, Springer-Verlang, Berlin, 2011.

    Google Scholar 

  11. B. Iversen, Cohomology of Sheaves, Universitext, Springer-Verlag, Berlin, 1986.

    Book  Google Scholar 

  12. V. G. Kac, Lie superalgebras, Adv. Math. 26 (1977), no. 1, 8–96.

    Article  MATH  Google Scholar 

  13. V. G. Kac, Laplace operators of infinite-dimensional Lie algebras and theta functions, Proc. Nat. Acad. Sci. USA. (2, Phys. Sci.) 81 (1984), 645–647.

    Article  MATH  Google Scholar 

  14. V. G. Kac, M. Gorelik, P. Möseneder Frajria, P. Papi, Denominator identities for finite-dimensional lie superalgebras and howe duality for compact dual pairs, Jap. J. Math. (2012), to appear.

  15. B. Kostant, Graded manifolds, graded Lie theory, and prequantization, in: Differential Geometrical Methods in Mathematical Physics, Proc. Sympos., Univ. Bonn, Bonn, 1975, Lecture Notes in Mathematics, Vol. 570, Springer-Verlag, Berlin, 1977, pp. 177–306.

  16. B. Kostant, S. Rallis, Orbits and representations associated with symmetric spaces, Amer. J. Math. 93 (1971), 753–809.

    Article  MathSciNet  MATH  Google Scholar 

  17. J.-L. Koszul, Graded manifolds and graded Lie algebras, in: Proceedings of the International Meeting on Geometry and Physics, Florence, 1982, Pitagora, Bologna, 1983, pp. 71–84.

  18. Д. Лейтес, Введенuе в mеорuю суnермногооьрaзuй, УМН 35 (1980), no. 1(211), 3–57. Engl. transl.: D. Leites, Introduction to the theory of supermanifolds, Russian Math. Surveys 35 (1980), no. 1, 1–64.

  19. J. Lepowsky, On the Harish-Chandra homomorphism, Trans. Amer. Math. Soc. 208 (1975), 193–218.

    Article  MathSciNet  MATH  Google Scholar 

  20. O. Loos, Symmetric Spaces. I: General Theory, W. A. Benjamin, New York, 1969. Russian transl.: О. Лоос, Сuммеmрuческuе nросmрaнсmвa, Наука, М., 1985.

  21. S. MacLane, Categories for the Working Mathematician, 2nd ed., Graduate Texts in Mathematics, Vol. 5, Springer-Verlag, New York, 1998.

  22. Y. I. Manin, Gauge Field Theory and Complex Geometry, Grundlehren der Mathematischen Wissenschaften, Vol. 289, Springer-Verlag, Berlin, 1988.

  23. M. Scheunert, The Theory of Lie Superalgebras, Lecture Notes in Mathematics, Vol. 716, Springer-Verlag, Berlin, 1979.

  24. T. Schmitt, Super differential geometry, Akademie der Wissenschaften der DDR, Institut für Mathematik, Report R-MATH-05/84, 1984.

  25. A. P. Schnyder, S. Ryu, A. Furusaki, A. W. W. Ludwig, Classification of topological insulators and superconductors, AIP Conf. Proc. 1134 (2009), 10–21.

  26. В. В. Серганова, Клaссuфuкaцuя nросmых вещесmвенных суnерaлгебр Лu u сuммеmрuческuх, Функц. анализ и прилож. 17 (1983), no. 3, 46–54. Engl. transl.: V. V. Serganova, Classification of simple real Lie superalgebras and symmetric superspaces, Functional Anal. Appl. 17 (1983), no. 3, 200–207.

  27. V. N. Shander, Orientations of supermanifolds, Funct. Anal. Appl. 22 (1988), no. 1, 80–82.

    Article  MathSciNet  MATH  Google Scholar 

  28. E. G. Vishnyakova, On complex Lie supergroups and homogeneous split supermanifolds, Transform. Groups 16 (2011), no. 1, 174–196.

    Article  MathSciNet  Google Scholar 

  29. T. Voronov, Geometric Integration Theory on Supermanifolds, Soviet Scientific Reviews, Section C: Mathematical Physics Reviews 9, Harwood Academic Publishers, Chur, 1991.

  30. C. A. Weibel, An Introduction to Homological Algebra, Cambridge Studies in Advanced Mathematics, Vol. 38, Cambridge University Press, Cambridge, 1994.

    Google Scholar 

  31. M. R. Zirnbauer, Fourier analysis on a hyperbolic supermanifold with constant curvature, Comm. Math. Phys. 141 (1991), 503–522.

    Article  MathSciNet  MATH  Google Scholar 

  32. M. R. Zirnbauer, Riemannian symmetric superspaces and their origin in random-matrix theory, J. Math. Phys. 37 (1996), no. 10, 4986–5018.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Alldridge.

Additional information

This research was supported by the Leibniz group, SFB/Transregio 12, SPP 1388, and IRTG 1133 grants, funded by Deutsche Forschungsgemeinschaft (DFG).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alldridge, A. The Harish-Chandra isomorphism for reductive symmetric superpairs. Transformation Groups 17, 889–919 (2012). https://doi.org/10.1007/s00031-012-9200-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00031-012-9200-y

Keywords

MSC 2010

Navigation