Skip to main content
Log in

Equivariant cohomology for Hamiltonian torus actions on symplectic orbifolds

  • Published:
Transformation Groups Aims and scope Submit manuscript

Abstract

We study Hamiltonian R-actions on symplectic orbifolds [M/S], where R and S are tori. We prove an injectivity theorem and generalize Tolman and Weitsman’s proof of the GKM theorem [TW] in this setting. The main example is the symplectic reduction X//S of a Hamiltonian T-manifold X by a subtorus S ⊂ T. This includes the class of symplectic toric orbifolds. We define the equivariant Chen–Ruan cohomology ring and use the above results to establish a combinatorial method of computing this equivariant Chen–Ruan cohomology in terms of orbifold fixed point data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Abramovich, T. Graber, A. Vistoli, Algebraic orbifold quantum products, in: Orbifolds in Mathematics and Physics (Madison, Wisc., 2001), Contemp. Math., Vol. 310, American Mathematical Society, Providence, RI, 2002, pp. 1–24.

    Chapter  Google Scholar 

  2. A. Adem, J. Leida, Y. Ruan, Orbifolds and Stringy Topology, Cambridge Tracts in Mathematics, Vol. 171, Cambridge University Press, Cambridge, 2007.

    Book  MATH  Google Scholar 

  3. M. Atiyah, R. Bott, The moment map and equivariant cohomology, Topology 23 (1984), no. 1, 1–28.

    Article  MathSciNet  MATH  Google Scholar 

  4. M. Brion, Piecewise polynomial functions, convex polytopes and enumerative geometry, in: Parameter Spaces (Warsaw, 1994), Banach Center Publ. 36, Polish Acad. Sci., Warsaw, 1996, pp. 25–44.

    Google Scholar 

  5. L. J. Billera, The algebra of continuous piecewise polynomials, Adv. Math. 76 (1989), no. 2, 170–183.

    Article  MathSciNet  MATH  Google Scholar 

  6. L. Borisov, L. Chen, G. Smith, The orbifold Chow ring of toric Deligne–Mumford stack, J. Amer. Math. Soc. 18 (2005), no. 1, 193–215.

    Article  MathSciNet  MATH  Google Scholar 

  7. V. Buchstaber, T. Panov, Torus Actions and Their Applications in Topology and Combinatorics, University Lecture Series, Vol. 24. American Mathematical Society, Providence, RI, 2002.

    MATH  Google Scholar 

  8. L. J. Billera, L. Rose, Modules of piecewise polynomials and their freeness, Math. Z. 209 (1992), no. 4, 485–497.

    Article  MathSciNet  MATH  Google Scholar 

  9. W. Chen, Y. Ruan, A new cohomology theory of orbifold, Commun. Math. Phys. 248 (1) (2004), 1–31.

    Article  MathSciNet  MATH  Google Scholar 

  10. D. Edidin, T. Jarvis, T. Kimura, Logarithmic trace and orbifold products, Duke Math. J. 153 (2010), no. 3, 427–473.

    Article  MathSciNet  MATH  Google Scholar 

  11. B. Fantechi, L. Göttsche, Orbifold cohomology for global quotients, Duke Math. J. 117 (2003), no. 2, 197–227.

    Article  MathSciNet  MATH  Google Scholar 

  12. M. Franz, V. Puppe, Exact cohomology sequences with integral coefficients for torus actions, Transform. Groups 12 (2007), no. 1, 65–76.

    Article  MathSciNet  MATH  Google Scholar 

  13. R. Goldin, M. Harada, Orbifold cohomology of hypertoric varieties, Internat. J. Math. 19 (2008), no. 8, 927–956.

    Article  MathSciNet  MATH  Google Scholar 

  14. R. Goldin, M. Harada, T. Holm, Torsion in the full orbifold K-theory of abelian symplectic quotients, Geom. Dedicata 157 (2012), no. 1, 187–204.

    Article  MathSciNet  MATH  Google Scholar 

  15. R. Goldin, T. Holm, A. Knutson, Orbifold cohomology of torus quotients, Duke Math. J. 139 (2007), no. 1, 89–139.

    Article  MathSciNet  MATH  Google Scholar 

  16. M. Goresky, R. Kottwitz, R. MacPherson, Equivariant cohomology, Koszul duality, and the localization theorem, Invent. Math. 131 (1998), 25–83.

    Article  MathSciNet  MATH  Google Scholar 

  17. T. Holm, Orbifold cohomology of abelian symplectic reductions and the case of weighted projective spaces, in: Poisson Geometry in Mathematics and Physics, Contemp. Math., Vol. 450, American Mathematical Society, Providence, RI, 2008, pp. 127–146.

    Chapter  Google Scholar 

  18. T. Holm, S. Tolman, Integral Kirwan surjectivity for Hamiltonian T-manifolds, in preparation.

  19. I. Iwanari, Integral Chow rings of toric stacks, Int. Math. Res. Not. 2009 (2009), no. 24, 4709–4725.

    MathSciNet  MATH  Google Scholar 

  20. T. Jarvis, R. Kaufmann, T. Kimura, Stringy K-theory and the Chern character, Invent. Math. 168 (2007), no. 1, 23–81.

    Article  MathSciNet  MATH  Google Scholar 

  21. P. Johnson, Equivariant Gromov–Witten theory of one-dimensional stacks, Ph.D. thesis at the University of Michigan, 2009.

  22. E. Lerman, A. Malkin, Hamiltonian group actions on symplectic Deligne–Mumford stacks and toric orbifolds, Adv. Math. 229 (2012), no. 2, 984–1000.

    Article  MathSciNet  MATH  Google Scholar 

  23. E. Lerman, S. Tolman, Hamiltonian torus actions on symplectic orbifolds and toric varieties, Trans. Amer. Math. Soc. 349 (1997), no. 10, 4201–4230.

    Article  MathSciNet  MATH  Google Scholar 

  24. S. Luo, T. Matsumura, F. Moore, Moment angle complexes and big Cohen–Macaulayness, arXiv:1205.1566.

  25. T. Panov, Cohomology of face rings, and torus actions, in: Surveys in Contemporary Mathematics, London Math. Soc. Lecture Note Ser., Vol. 347, Cambridge Univ. Press, Cambridge, 2008, pp. 165–201.

    Google Scholar 

  26. S. Tolman, J. Weitsman, On the cohomology rings of Hamiltonian T-spaces, in: Northern California Symplectic Geometry Seminar, Amer. Math. Soc. Transl. Ser. 2, Vol. 196, American Mathematical Society, Providence, RI, 1999. pp. 251–258.

    Google Scholar 

  27. S. Tolman, J. Weitsman, The cohomology rings of symplectic quotients, Comm. Anal. Geom. 11 (2003), no. 4, 751–773.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. S. Holm.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holm, T.S., Matsumura, T. Equivariant cohomology for Hamiltonian torus actions on symplectic orbifolds. Transformation Groups 17, 717–746 (2012). https://doi.org/10.1007/s00031-012-9192-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00031-012-9192-7

Keywords

Navigation