Transformation Groups

, Volume 17, Issue 3, pp 717–746 | Cite as

Equivariant cohomology for Hamiltonian torus actions on symplectic orbifolds



We study Hamiltonian R-actions on symplectic orbifolds [M/S], where R and S are tori. We prove an injectivity theorem and generalize Tolman and Weitsman’s proof of the GKM theorem [TW] in this setting. The main example is the symplectic reduction X//S of a Hamiltonian T-manifold X by a subtorus S ⊂ T. This includes the class of symplectic toric orbifolds. We define the equivariant Chen–Ruan cohomology ring and use the above results to establish a combinatorial method of computing this equivariant Chen–Ruan cohomology in terms of orbifold fixed point data.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AGV]
    D. Abramovich, T. Graber, A. Vistoli, Algebraic orbifold quantum products, in: Orbifolds in Mathematics and Physics (Madison, Wisc., 2001), Contemp. Math., Vol. 310, American Mathematical Society, Providence, RI, 2002, pp. 1–24.CrossRefGoogle Scholar
  2. [ALR]
    A. Adem, J. Leida, Y. Ruan, Orbifolds and Stringy Topology, Cambridge Tracts in Mathematics, Vol. 171, Cambridge University Press, Cambridge, 2007.MATHCrossRefGoogle Scholar
  3. [AB]
    M. Atiyah, R. Bott, The moment map and equivariant cohomology, Topology 23 (1984), no. 1, 1–28.MathSciNetMATHCrossRefGoogle Scholar
  4. [Br]
    M. Brion, Piecewise polynomial functions, convex polytopes and enumerative geometry, in: Parameter Spaces (Warsaw, 1994), Banach Center Publ. 36, Polish Acad. Sci., Warsaw, 1996, pp. 25–44.Google Scholar
  5. [Bl]
    L. J. Billera, The algebra of continuous piecewise polynomials, Adv. Math. 76 (1989), no. 2, 170–183.MathSciNetMATHCrossRefGoogle Scholar
  6. [BCS]
    L. Borisov, L. Chen, G. Smith, The orbifold Chow ring of toric Deligne–Mumford stack, J. Amer. Math. Soc. 18 (2005), no. 1, 193–215.MathSciNetMATHCrossRefGoogle Scholar
  7. [BP]
    V. Buchstaber, T. Panov, Torus Actions and Their Applications in Topology and Combinatorics, University Lecture Series, Vol. 24. American Mathematical Society, Providence, RI, 2002.MATHGoogle Scholar
  8. [BR]
    L. J. Billera, L. Rose, Modules of piecewise polynomials and their freeness, Math. Z. 209 (1992), no. 4, 485–497.MathSciNetMATHCrossRefGoogle Scholar
  9. [CR]
    W. Chen, Y. Ruan, A new cohomology theory of orbifold, Commun. Math. Phys. 248 (1) (2004), 1–31.MathSciNetMATHCrossRefGoogle Scholar
  10. [EJK]
    D. Edidin, T. Jarvis, T. Kimura, Logarithmic trace and orbifold products, Duke Math. J. 153 (2010), no. 3, 427–473.MathSciNetMATHCrossRefGoogle Scholar
  11. [FG]
    B. Fantechi, L. Göttsche, Orbifold cohomology for global quotients, Duke Math. J. 117 (2003), no. 2, 197–227.MathSciNetMATHCrossRefGoogle Scholar
  12. [FP]
    M. Franz, V. Puppe, Exact cohomology sequences with integral coefficients for torus actions, Transform. Groups 12 (2007), no. 1, 65–76.MathSciNetMATHCrossRefGoogle Scholar
  13. [GH]
    R. Goldin, M. Harada, Orbifold cohomology of hypertoric varieties, Internat. J. Math. 19 (2008), no. 8, 927–956.MathSciNetMATHCrossRefGoogle Scholar
  14. [GHH]
    R. Goldin, M. Harada, T. Holm, Torsion in the full orbifold K-theory of abelian symplectic quotients, Geom. Dedicata 157 (2012), no. 1, 187–204.MathSciNetMATHCrossRefGoogle Scholar
  15. [GHK]
    R. Goldin, T. Holm, A. Knutson, Orbifold cohomology of torus quotients, Duke Math. J. 139 (2007), no. 1, 89–139.MathSciNetMATHCrossRefGoogle Scholar
  16. [GKM]
    M. Goresky, R. Kottwitz, R. MacPherson, Equivariant cohomology, Koszul duality, and the localization theorem, Invent. Math. 131 (1998), 25–83.MathSciNetMATHCrossRefGoogle Scholar
  17. [H]
    T. Holm, Orbifold cohomology of abelian symplectic reductions and the case of weighted projective spaces, in: Poisson Geometry in Mathematics and Physics, Contemp. Math., Vol. 450, American Mathematical Society, Providence, RI, 2008, pp. 127–146.CrossRefGoogle Scholar
  18. [HT]
    T. Holm, S. Tolman, Integral Kirwan surjectivity for Hamiltonian T-manifolds, in preparation.Google Scholar
  19. [I]
    I. Iwanari, Integral Chow rings of toric stacks, Int. Math. Res. Not. 2009 (2009), no. 24, 4709–4725.MathSciNetMATHGoogle Scholar
  20. [JKK]
    T. Jarvis, R. Kaufmann, T. Kimura, Stringy K-theory and the Chern character, Invent. Math. 168 (2007), no. 1, 23–81.MathSciNetMATHCrossRefGoogle Scholar
  21. [J]
    P. Johnson, Equivariant Gromov–Witten theory of one-dimensional stacks, Ph.D. thesis at the University of Michigan, 2009.Google Scholar
  22. [LM]
    E. Lerman, A. Malkin, Hamiltonian group actions on symplectic Deligne–Mumford stacks and toric orbifolds, Adv. Math. 229 (2012), no. 2, 984–1000.MathSciNetMATHCrossRefGoogle Scholar
  23. [LT]
    E. Lerman, S. Tolman, Hamiltonian torus actions on symplectic orbifolds and toric varieties, Trans. Amer. Math. Soc. 349 (1997), no. 10, 4201–4230.MathSciNetMATHCrossRefGoogle Scholar
  24. [LMM]
    S. Luo, T. Matsumura, F. Moore, Moment angle complexes and big Cohen–Macaulayness, arXiv:1205.1566.Google Scholar
  25. [P]
    T. Panov, Cohomology of face rings, and torus actions, in: Surveys in Contemporary Mathematics, London Math. Soc. Lecture Note Ser., Vol. 347, Cambridge Univ. Press, Cambridge, 2008, pp. 165–201.Google Scholar
  26. [TW]
    S. Tolman, J. Weitsman, On the cohomology rings of Hamiltonian T-spaces, in: Northern California Symplectic Geometry Seminar, Amer. Math. Soc. Transl. Ser. 2, Vol. 196, American Mathematical Society, Providence, RI, 1999. pp. 251–258.Google Scholar
  27. [TW2]
    S. Tolman, J. Weitsman, The cohomology rings of symplectic quotients, Comm. Anal. Geom. 11 (2003), no. 4, 751–773.MathSciNetMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of MathematicsCornell UniversityIthacaUSA
  2. 2.Department of Mathematical SciencesASARC, KAISTDaejeonSouth Korea

Personalised recommendations