Skip to main content

Three embeddings of the Klein simple group into the Cremona group of rank three

Abstract

We study the action of the Klein simple group PSL2(\( {\mathbb{F}_7} \)) consisting of 168 elements on two rational threefolds: the three-dimensional projective space and a smooth Fano threefold X of anticanonical degree 22 and index 1. We show that the Cremona group of rank three has at least three non-conjugate subgroups isomorphic to PSL2(\( {\mathbb{F}_7} \)). As a by-product, we prove that X admits a Kähler–Einstein metric, and we construct a smooth polarized K3 surface of degree 22 with an action of the group PSL2(\( {\mathbb{F}_7} \)).

Unless explicitly stated otherwise, varieties are assumed to be projective, normal and complex.

This is a preview of subscription content, access via your institution.

References

  1. [B11]

    A. Beauville, Non-rationality of the symmetric sextic Fano threefold, arXiv: math/1102.1255 (2011).

  2. [Mag]

    W. Bosma, J. Cannon, C. Playoust, The Magma algebra system. I. The user language, J. Symb. Comp. 24 (1997), 235–265.

    MathSciNet  MATH  Article  Google Scholar 

  3. [Bl17]

    3 H. Blichfeldt, Finite Collineation Groups, University of Chicago Press, Chicago, 1917.

    Google Scholar 

  4. [Ch07]

    I. Cheltsov, Log canonical thresholds of del Pezzo surfaces, Geom. Funct. Anal. 18 (2008), 1118–1144.

    MathSciNet  MATH  Article  Google Scholar 

  5. [Ch09]

    I. Cheltsov, Two local inequalities, arXiv:math/0908.0401 (2009).

  6. [CS08]

    И. А. Чельцов, К. А. Шрамов, Лог-канонические nороги неособых трёхмерных многообразий фано, УМН 63 (2008), no. 5(383), 73–180. Engl. transl.: I. Cheltsov, C. Shramov, Log canonical thresholds of smooth Fano threefolds, Russian Mathematical Surveys 63 (2008), no. 5, 859–958.

  7. [CS09a]

    I. Cheltsov, C. Shramov, On exceptional quotient singularities, Geometry and Topology 15 (2011), 1843–1882.

    MathSciNet  MATH  Article  Google Scholar 

  8. [CS09b]

    I. Cheltsov, C. Shramov, Five embeddings of one simple group, to appear in Transactions of AMS, arXiv:math/0910.1783 (2009).

  9. [Atl]

    J. Conway, R. Curtis, S. Norton, R. Parker, R. Wilson, Atlas of Finite Groups, Clarendon Press, Oxford, 1985.

    MATH  Google Scholar 

  10. [C00]

    A. Corti, Singularities of linear systems and 3-fold birational geometry, in: Explicit Birational Geometry of 3-Folds, London Math. Soc. Lecture Note Ser., Vol. 281, Cambridge Univ. Press, Cambridge, 2000, pp. 259–312.

  11. [D99]

    I. Dolgachev, Invariant stable bundles over modular curves X(p), in: Recent Progress in Algebra (Taejon/Seoul, 1997), Contemporary Mathematics, Vol. 224, Amer. Math. Soc., Providence, RI, 1999, pp. 65–99.

  12. [DI06]

    I. Dolgachev, V. Iskovskikh, Finite subgroups of the plane Cremona group, in: Algebra, Arithmetic, and Geometry: in Honor of Yu. I. Manin, Vol. I, Progress in Mathematics, Vol. 269, Birkhäuser Boston, Boston, MA, 2009, pp. 443–548.

  13. [DK93]

    I. Dolgachev, V. Kanev, Polar covariants of plane cubics and quartics, Adv. in Math. 98 (1993), 216–301.

    MathSciNet  MATH  Article  Google Scholar 

  14. [Do08]

    S. Donaldson, Kähler geometry on toric manifolds, and some other manifolds with large symmetry, in: Handbook of Geometric Analysis, no. 1, Advanced Lectures in Mathematics, Vol. 1, Int. Press, Somerville, MA, 2008, pp. 29–75.

  15. [E47]

    W. Edge, The Klein group in three dimensions, Acta Math. 79 (1947), 153–223.

    MathSciNet  MATH  Article  Google Scholar 

  16. [EK87]

    D. Eisenbud, J.-H. Koh, Remarks on points in a projective space, in: Commutative Algebra (Berkeley, CA, 1987), Math. Sci. Res. Inst. Publ., Vol. 15, Springer, New York, 1989, pp. 157–172.

  17. [H77]

    R. Hartshorne, Algebraic Geometry, Graduate Texts in Mathematics 52, Springer-Verlag, New York, 1977. Russian transl.: Р. Хартсхорн, Алгебраическая геометрия, Мир, М., 1981.

  18. [GP01]

    M. Gross, S. Popescu, Calabi–Yau threefolds and moduli of abelian surfaces I, Compositio Math. 127 (2001), 169–228.

    MathSciNet  MATH  Article  Google Scholar 

  19. [IP99]

    V. Iskovskikh, Yu. Prokhorov, Fano varieties, in: Algebraic Geometry, V, Encyclopaedia of Mathematical Sciences, Vol. 47, Springer, Berlin, 1999, pp. 1–247.

  20. [K97]

    Y. Kawamata, On Fujita’s freeness conjecture for 3-folds and 4-folds, Math. Ann. 308 (1997), 491–505.

    MathSciNet  MATH  Article  Google Scholar 

  21. [K98]

    Y. Kawamata, Subadjunction of log canonical divisors II, Amer. J. Math. 120 (1998), 893–899.

    MathSciNet  MATH  Article  Google Scholar 

  22. [Ko97]

    J. Kollár, Singularities of pairs, in: Algebraic Geometry (Santa Cruz, 1995), Proceedings of Symposia in Pure Mathematics, Vol. 62, Part 1, Amer. Math. Soc., Providence, RI, 1997, pp. 221–287.

  23. [L04]

    R. Lazarsfeld, Positivity in Algebraic Geometry II, Springer-Verlag, Berlin, 2004.

    Book  Google Scholar 

  24. [L99]

    S. Levy, ed., The Eightfold Way: The Beauty of Klein's Quartic Curve, MSRI Publications, Vol. 35, Cambridge University Press, 1999.

  25. [MS73]

    C. Mallows, N. Sloane, On the invariants of a linear group of order 336, Proc. Cambridge Phil. Soc. 74 (1973), 435–440.

    MathSciNet  MATH  Article  Google Scholar 

  26. [MS01]

    N. Manolache, F.-O. Schreyer, Moduli of (1, 7)-polarized abelian surfaces via syzygies, Math. Nachr. 226 (2001), 177–203.

    MathSciNet  MATH  Article  Google Scholar 

  27. [M04]

    A. Marini, On a family of (1, 7)-polarised abelian surfaces, Math. Scand. 95 (2004), 181–225.

    MathSciNet  MATH  Google Scholar 

  28. [MR03]

    F. Melliez, K. Ranestad, Degenerations of (1, 7)-polarized abelian surfaces, Math. Scand. 97 (2005), 161–187.

    MathSciNet  MATH  Google Scholar 

  29. [Mu88]

    S. Mukai, Finite groups of automorphisms of K3 surfaces and the Mathieu group, Invent. Math. 94 (1988), 183–221.

    MathSciNet  MATH  Article  Google Scholar 

  30. [Mu89]

    S. Mukai, Biregular classification of Fano 3-folds and Fano manifolds of coindex 3, Proc. Nat. Acad. Sci. USA 9 (1989), 3000–3002.

    Article  Google Scholar 

  31. [Mu92]

    S. Mukai, Fano 3-folds, in: Complex Projective Geometry (Trieste, 1989/Bergen, 1989), London Math. Soc. Lecture Note Series, Vol. 179, Cambridge Univ. Press, Cambridge, 199, pp. 255–263

  32. [Og02]

    K. Oguiso, D.-Q. Zhang, The simple group of order 168 and K3 surfaces, in: Complex Geometry (Göttingen, 2000), Springer, Berlin, 2002, pp. 165–184.

  33. [P98]

    Yu. Prokhorov, Blow-ups of canonical singularities, in: Algebra (Moscow, 1998), de Gruyter, Berlin (2000), pp. 301–317.

  34. [P90]

    Ю. Прохоров, Зкзотические многообразия фано, Вестник Моск. унив., сер. мат., мех. (1990), no. 3, 34–37, 111. Engl. transl.: Yu. Prokhorov, Exotic Fano varieties, Moscow Univ. Math. Bull. 45 (1990), no. 3, 36–38.

  35. [P09]

    Yu. Prokhorov, Simple finite subgroups of the Cremona group of rank 3, arXiv: math/0908.0678 (2009).

  36. [RS00]

    K. Ranestad, F.-O. Schreyer, Varieties of sums of powers, J. Reine Angew. Math. 525 (2000), 147–181.

    MathSciNet  MATH  Article  Google Scholar 

  37. [S01]

    F.-O. Schreyer, Geometry and algebra of prime Fano 3-folds of genus 12, Compositio Math. 127 (2001), 297–319.

    MathSciNet  MATH  Article  Google Scholar 

  38. [Se09]

    J.-P. Serre, A Minkowski-style bound for the order of the finite subgroups of the Cremona group of rank 2 over an arbitrary field, Moscow Math. J. 9 (2009), 193–208.

    Google Scholar 

  39. [S77]

    T. Springer, Invariant Theory, Lecture Notes in Mathematics, Vol. 585, Springer-Verlag, Berlin, 1977. Russian transl.: Т. Спрингер, Теория инвариантов, Мир, М., 1981.

  40. [T87]

    G. Tian, On Kähler–Einstein metrics on certain Kähler manifolds with c 1(M) > 0, Invent. Math. 89 (1987), 225–246.

    MathSciNet  MATH  Article  Google Scholar 

  41. [T97]

    G. Tian, Kähler–Einstein metrics with positive scalar curvature, Invent. Math. 130 (1997), 1–37.

    MathSciNet  MATH  Article  Google Scholar 

  42. [X96]

    G. Xiao, Galois covers between K3 surfaces, Annales de l’Institut Fourier 46 (1996), 73–88.

    MATH  Article  Google Scholar 

  43. [YY93]

    S. Yau, Y. Yu, Gorenstein Quotient Singularities in Dimension Three, Mem. Amer. Math. Soc., Vol. 505, Providence, RI, 1993.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ivan Cheltsov.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cheltsov, I., Shramov, C. Three embeddings of the Klein simple group into the Cremona group of rank three. Transformation Groups 17, 303–350 (2012). https://doi.org/10.1007/s00031-012-9183-8

Download citation

Keywords

  • General Surface
  • Abelian Surface
  • Irreducible Curve
  • Canonical Singularity
  • Minimal Center