Skip to main content
Log in

Algèbres de Lie quasi-réductives

  • Published:
Transformation Groups Aims and scope Submit manuscript

An Erratum to this article was published on 08 February 2013

Abstract

We study the class of algebraic Lie algebras for which the generic stabilizer of the coadjoint action is reductive modulo the center.

Résumé

Nous étudions la classe des algèbres de Lie dont le stabilisateur générique de la représentation coadjointe est réductif modulo le centre.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Références

  1. M. Andler, La formule de Plancherel pour les groupes algébriques complexes unimodulaires, Acta. Math. 154 (1985), 1–104.

    Article  MathSciNet  MATH  Google Scholar 

  2. N. H. Anh, Algebraic groups with square-integrable representations, Bull. Amer. Math. Soc. 80 (1974), 539–542.

    Article  MathSciNet  MATH  Google Scholar 

  3. N. H. Anh, Classification of unimodular algebraic groups with square integrable representations, Acta Mathematica Vietnamica 3 (1978), no. 2, 75–81.

    MathSciNet  MATH  Google Scholar 

  4. N. H. Anh, Classification of connected unimodular Lie groups with discrete series, Ann. Inst. Fourier, Grenoble 30 (1980), no. 1, 159–192.

    Article  MathSciNet  MATH  Google Scholar 

  5. A. Borel, Harish-Chandra, Arithmetic subroups of algebraic groups, Annals of Math. 75 (1962), 485–535.

    Article  MathSciNet  MATH  Google Scholar 

  6. K. Baur, A. Moreau, Quasi-reductive (bi)parabolic subalgebras in the reductive Lie algebras, Ann. Instit. Fourier (Grenoble) 61 (2011), no. 2, 417–451.

    Article  MathSciNet  MATH  Google Scholar 

  7. D. Burde, Characteristically nilpotent Lie algebras and symplectic structures, Forum Math. 18 (2006), no. 5, 769–787.

    Article  MathSciNet  MATH  Google Scholar 

  8. J.-Y. Charbonnel, J. Dixmier, Sur la représentation coadjointe des algbres de Lie résolubles, J. Reine Angew. Math. 324 (1981), 154–164.

    MathSciNet  MATH  Google Scholar 

  9. J.-Y. Charbonnel, Sur les orbites de la représentation coadjointe, Compositio Math. 46 (1982), 273–305.

    MathSciNet  MATH  Google Scholar 

  10. Yu. A. Drozd, Matrix problems, small reduction and representations of a class of mixed Lie groups, in: Representations of Algebras and Related Topics (Kyoto, 1990), London Math. Soc. Lecture Note Ser., Vol. 168, Cambridge Univ. Press, Cambridge, 1992, pp. 225–249.

  11. M. Duflo, Théorie de Mackey pour les groupes de Lie algébriques, Acta. Math. 149 (1982), 153–213.

    Article  MathSciNet  MATH  Google Scholar 

  12. A. Dvorsky, Generic representations of parabolic subgroups. Case I. \( SO\left( {2n,\mathbb{C}} \right) \), Comm. Algebra 23 (1995), no. 4, 1369–1402.

    Article  MathSciNet  MATH  Google Scholar 

  13. A. Dvorsky, Generic representations of parabolic subgroups. Case II. \( SO\left( {2n + 1,\,\mathbb{C}} \right) \), Comm. Algebra 24 (1996), no. 1, 259–288.

    Article  MathSciNet  MATH  Google Scholar 

  14. A. Dvorsky, Index of parabolic and seaweed subalgebras of \( \mathfrak{s}{\mathfrak{o}_n} \), Linear Algebra Appl. 374 (2003), 127–142.

    Article  MathSciNet  MATH  Google Scholar 

  15. А. Г. Элашвили, Фробениусовы алгебры Ли, Функд. анализ и его прилож. 16 (1982), no. 4, 94–95. Engl. transl.: A. G. Élashvili, Frobenius Lie algebras, Funct. Anal. Appl. 16 (1983), 326–328.

    Article  MATH  Google Scholar 

  16. A. G. Elashvili, A. I. Ooms, On commutative polarizations, J. Algebra 26 (2003), no. 1, 129–154.

    Article  MathSciNet  Google Scholar 

  17. A. Joseph, A preparation theorem for the prime spectrum of a semisimple Lie algebra, J. Algebra 48 (1977), no. 2, 241–289.

    Article  MathSciNet  MATH  Google Scholar 

  18. Y. Khakimdjanov, M. Goze, A. Medina, Symplectic or contact structures on Lie groups, Differential Geom. Appl. 21 (2004), no. 1, 41–54.

    Article  MathSciNet  MATH  Google Scholar 

  19. T. Kimura, Introduction to Prehomogeneous Vector Spaces, Translations of Mathematical Monographs, Vol. 215, American Mathematical Society, Providence, RI, 2003.

    Google Scholar 

  20. А. А. Кириллов, Унитарные представления нильпотентных групп Ли, УМН 17 (1962), no. 4(106), 57–110. Engl. transl.: A. A. Kirillov, Unitary representations of nilpotent Lie groups, Russ. Math. Surv. 17 (1962), no. 4, 53–104.

    Article  MathSciNet  MATH  Google Scholar 

  21. B. Kostant, The cascade of orthogonal roots and the coadjoint structure of the nilradical of a Borel subgroup of a semisimple Lie group, à paraître dans Moscow Math. J., arXiv:1101.5382.

  22. Y. Kosmann. S. Sternberg, Conjugaison des sous-algèbres d’isotropie, C. R. Acad. Sci. Paris Sér. A 279 (1974), 777–779.

    MathSciNet  MATH  Google Scholar 

  23. M. S. Khalgui, P. Torasso, Formule de Poisson–Plancherel pour un groupe presque algébrique réel, I. Transformée de Fourier d’intégrales orbitales, J. Funct. Anal. 116 (1993), 359–440.

    Article  MathSciNet  MATH  Google Scholar 

  24. M. S. Khalgui, P. Torasso, La formule de Plancherel pour les groupes de Lie presque algébriques réels, J. Funct. Anal. 235 (2006), 449–542.

    Article  MathSciNet  MATH  Google Scholar 

  25. A. Moreau, O. Yakimova, Coadjoint orbits of reductive type of seaweed Lie algebras, à paraître dans Int. Math. Res. Not., arXiv:1101.0902.

  26. A. I. Ooms, On Frobenius Lie algebras, Comm. Algebra 8 (1980), no. 1, 13–52.

    Article  MathSciNet  MATH  Google Scholar 

  27. D. I. Panyushev, An extension of Raïs’ theorem and seaweed subalgebras of simple Lie algebras, Ann. Inst. Fourier (Grenoble) 55 (2005), no. 3, 693–715.

    Article  MathSciNet  MATH  Google Scholar 

  28. A. Premet, S. Skryabin, Representations of restricted Lie algebras and families of associative -algebras, J. Reine Angew. Math. 507 (1999), 189–218.

    MathSciNet  MATH  Google Scholar 

  29. P. Tauvel, R. W. T. Yu, Indice et formes linéaires stables dans les algbres de Lie, J. Algebra 273 (2004), 507–516.

    Article  MathSciNet  MATH  Google Scholar 

  30. P. Tauvel, R. W. T. Yu, Sur l’indice de certaines algbres de Lie, Ann. Inst. Fourier 54 (2004), no. 6, 1793–1810.

    Article  MathSciNet  MATH  Google Scholar 

  31. P. Tauvel, R. W. T. Yu, Lie Algebras and Algebraic Groups, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2005.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Duflo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duflo, M., Khalgui, M.S. & Torasso, P. Algèbres de Lie quasi-réductives. Transformation Groups 17, 417–470 (2012). https://doi.org/10.1007/s00031-012-9179-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00031-012-9179-4

Keywords

Navigation