Skip to main content
Log in

Torsion in equivariant cohomology and Cohen-Macaulay G-actions

  • Published:
Transformation Groups Aims and scope Submit manuscript

Abstract

We show that the well-known fact that the equivariant cohomology (with real coefficients) of a torus action is a torsion-free module if and only if the map induced by the inclusion of the fixed point set is injective generalises to actions of arbitrary compact connected Lie groups if one replaces the fixed point set by the set of points with isotropy rank equal to the rank of the acting group. This is true essentially because the action on this set is always equivariantly formal. In case this set is empty we show that the induced action on the set of points with highest occuring isotropy rank is Cohen-Macaulay. It turns out that just as equivariant formality of an action is equivalent to equivariant formality of the action of a maximal torus, the same holds true for equivariant injectivity and the Cohen-Macaulay property. In addition, we find a topological criterion for equivariant injectivity in terms of orbit spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Allday, A family of unusual torus group actions, in: Group Actions on Manifolds, Contemporary Mathematics, Vol. 36, Amer. Math. Soc., Providence, RI, 1985, pp. 107–111.

  2. C. Allday, V. Puppe, Cohomological Methods in Transformation Groups, Cambridge Studies in Advanced Mathematics, Vol. 32, Cambridge University Press, Cambridge 1993.

    Book  MATH  Google Scholar 

  3. G. E. Bredon, The free part of a torus action and related numerical equalities, Duke Math. J. 41 (1974), 843–854.

    Article  MathSciNet  MATH  Google Scholar 

  4. W. Bruns, J. Herzog, Cohen-Macaulay Rings, Cambridge Studies in Advanced Mathematics, Vol. 39, Cambridge University Press, Cambridge, 1993.

    Google Scholar 

  5. H. Chen, An analytic model for S 3-equivariant cohomology, in Topology Hawaii (Honolulu, HI, 1990), World Sci. Publ., River Edge, NJ, 1992, pp. 53–61.

    Google Scholar 

  6. J. Duflot, Smooth toral actions, Topology 22 (1983), 253–265.

    Article  MathSciNet  MATH  Google Scholar 

  7. J. Duflot, The associated primes of H * G (X), J. Pure Appl. Algebra 30 (1983), no. 2, 131–141.

    Article  MathSciNet  MATH  Google Scholar 

  8. S. Eilenberg, J. C. Moore, Homology and fibrations, I, Comment. Math. Helv. 40 (1966), 199–236.

    Article  MathSciNet  MATH  Google Scholar 

  9. M. Franz, V. Puppe, Exact cohomology sequences with integral coefficients for torus actions, Transform. Groups 12 (2007), no. 1, 65–76.

    Article  MathSciNet  MATH  Google Scholar 

  10. M. Franz, V. Puppe, Exact sequences for equivariantly formal spaces, C. R. Math. Acad. Sci. Soc. R. Can. 33 (2011), 1–10.

    MathSciNet  MATH  Google Scholar 

  11. R. Godement, Topologie Algébrique et Théorie des Faisceaux, Actualités Sci. Ind., no. 1252, Publ. Math. Univ. Strasbourg, no. 13, Hermann, Paris, 1958. Russian transl.: Р. Годеман, Алгебрацческая топологця ц теорця пучков, Иэд. иностр. лит-ры, М., 1961.

  12. O. Goertsches, D. Töben, Torus actions whose equivariant cohomology is Cohen-Macaulay, J. Topology 3 (2010), no. 4, 819–846.

    Article  MATH  Google Scholar 

  13. M. Goresky, R. Kottwitz, R. MacPherson, Equivariant cohomology, Koszul duality, and the localization theorem, Invent. Math. 131 (1998), no. 1, 25–83.

    Article  MathSciNet  MATH  Google Scholar 

  14. V. W. Guillemin, V. L. Ginzburg, Y. Karshon, Moment Maps, Cobordisms, and Hamiltonian Group Actions, Mathematical Surveys and Monographs, Vol. 96, American Mathematical Society, Providence, RI, 2002.

  15. V. W. Guillemin, S. Sternberg, Supersymmetry and Equivariant de Rham Theory, Mathematics Past and Present, Springer-Verlag, Berlin, 1999.

    MATH  Google Scholar 

  16. V. Hauschild, Compact Lie group actions with isotropy subgroups of maximal rank, Manuscr. Math. 34 (1981), nos. 2–3, 355–379.

    Article  MathSciNet  MATH  Google Scholar 

  17. W. Y. Hsiang, Cohomology Theory of Topological Transformation Groups, Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 85, Springer-Verlag, New York, 1975. Russian transl.: У. И. Сян, Когомологцческая теорця топологцческцх групп преобразованцй, Мир, М., 1979.

  18. R. Kane, Reflection Groups and Invariant Theory, CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC, Vol. 5, Springer-Verlag, New York, 2001.

  19. P. W. Michor, Topics in Differential Geometry, Graduate Studies in Mathematics, Vol. 93, American Mathematical Society, Providence, RI, 2008.

    Google Scholar 

  20. А. Л. Онищик (ред.), Группы ц алгебры Лц, I, Итоги науки и техн., Соврем. пробл. матем., Фунд. т. 20, ВИНИТИ, М., 1988. Engl. transl.: A. L. Onishchik (Ed.), Lie Groups and Lie Algebras, I, Encyclopaedia of Mathematical Sciences, Vol. 20, Springer-Verlag, Berlin, 1993.

  21. J.-P. Serre, Local Algebra, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2000.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Goertsches.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goertsches, O., Rollenske, S. Torsion in equivariant cohomology and Cohen-Macaulay G-actions. Transformation Groups 16, 1063–1080 (2011). https://doi.org/10.1007/s00031-011-9154-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00031-011-9154-5

Keywords

Navigation