Skip to main content
Log in

On generalized Cartan subspaces

  • Published:
Transformation Groups Aims and scope Submit manuscript

Abstract

Let G be a connected reductive algebraic group defined over a field k of characteristic not 2, θ an involution of G defined over k, H a k-open subgroup of the fixed point group of θ and G k (resp. H k ) the set of k-rational points of G (resp. H). The variety G k /H k is called a symmetric k-variety. For real and p-adic symmetric k-varieties the space L 2(G k /H k ) of square integrable functions decomposes into several series, one for each H k -conjugacy class of Cartan subspaces of G k /H k .

In this paper we give a characterization of the H k -conjugacy classes of these Cartan subspaces in the case that there exists a splitting extension of order 2 and (G, σ) is (σ, k)-split conjugate (see Subsection 3.8). This condition is satisfied for k the real numbers and several other fields for which the symmetric k-variety has a splitting extension of order 2. For \( k = \mathbb{R} \) we prove a number of additional results as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.-L. Brylinski, P. Delorme, Vecteurs distributions H-invariants pour les séries principales généralisées d’espaces symétriques réductifs et prolongement méromorphe d’intégrales d’Eisenstein, Invent. Math. 109 (1992), no. 3, 619–664.

    Article  MathSciNet  MATH  Google Scholar 

  2. M. Berger, Les espaces symétriques non-compacts, Ann. Sci. école Norm. Sup. 4 (1957), 85–177.

    Google Scholar 

  3. S. L. Beun, A. G. Helminck, On the classification of orbits of symmetric subgroups acting on flag varieties of SL(2, k), Comm. Algebra 37 (2009), no. 4, 1334–1352.

    Article  MathSciNet  MATH  Google Scholar 

  4. A. Borel, Linear Algebraic Groups, 2nd ed., Graduate Texts in Mathematics, Vol. 126, Springer Verlag, New York, 1991.

    MATH  Google Scholar 

  5. A. Borel, J. Tits, Groupes réductifs, Inst. Hautes Études Sci. Publ. Math. 27 (1965), 55–152.

    Article  MathSciNet  Google Scholar 

  6. A. Borel, J. Tits, Compléments a l’article “groupes réductifs”, Inst. Hautes Études Sci. Publ. Math. 41 (1972), 253–276.

    Article  MathSciNet  MATH  Google Scholar 

  7. J. Carmona, P. Delorme, Base méromorphe de vecteurs distributions H-invariants pour les séries principales généralisées d’espaces symétriques réductifs: equation fonctionnelle, J. Funct. Anal. 122 (1994), no. 1, 152–221.

    Article  MathSciNet  MATH  Google Scholar 

  8. P. Delorme, Formule de Plancherel pour les espaces symétriques réductifs, Ann. of Math. (2) 147 (1998), no. 2, 417–452.

    Article  MathSciNet  MATH  Google Scholar 

  9. M. Flensted-Jensen, Discrete series for semisimple symmetric spaces, Annals of Math. 111 (1980), 253–311.

    Article  MathSciNet  MATH  Google Scholar 

  10. Harish-Chandra, Collected Papers Vols. I–IV, Springer-Verlag, New York, 1984, pp. 1944–1983.

    Google Scholar 

  11. S. Helgason, Differential Geometry, Lie Groups and Symmetric Spaces, Pure and Applied mathematics, Vol. XII, Academic Press, New York, 1978.

    MATH  Google Scholar 

  12. A. G. Helminck, Algebraic groups with a commuting pair of involutions and semisimple symmetric spaces, Adv. in Math. 71 (1988), 21–91.

    Article  MathSciNet  MATH  Google Scholar 

  13. A. G. Helminck, Tori invariant under an involutorial automorphism, I, Adv. in Math. 85 (1991), 1–38.

    Article  MathSciNet  MATH  Google Scholar 

  14. A. G. Helminck, Tori invariant under an involutorial automorphism, II, Adv. in Math. 131 (1997), no. 1, 1–92.

    Article  MathSciNet  MATH  Google Scholar 

  15. A. G. Helminck, On the classification of k-involutions, I, Adv. in Math. 153 (2000), no. 1, 1–117.

    Article  MathSciNet  MATH  Google Scholar 

  16. A. G. Helminck, Tori invariant under an involutorial automorphism, III, in preparation.

  17. A. G. Helminck, G. F. Helminck, A class of parabolic k-subgroups associated with symmetric k-varieties, Trans. Amer. Math. Soc. 350 (1998), 4669–4691.

    Article  MathSciNet  MATH  Google Scholar 

  18. A. G. Helminck, J. Hilgert, A. Neumann, G. Ólafsson, A conjugacy theorem for symmetric spaces, Math. Ann. 313 (1999), 785–791.

    Article  MathSciNet  MATH  Google Scholar 

  19. A. G. Helminck, G. W. Schwarz, Orbits and invariants associated with a pair of commuting involutions, Duke Math. J. 106 (2001), no. 2, 237–279.

    Article  MathSciNet  MATH  Google Scholar 

  20. A. G. Helminck, G. W. Schwarz, Orbits and invariants associated with a pair of spherical varieties: some examples, Acta Appl. Math. 73 (2002), nos. 1–2, 103–113.

    Article  MathSciNet  MATH  Google Scholar 

  21. A. G. Helminck, G. W. Schwarz, Smoothness of quotients associated with a pair of commuting involutions, Canad. J. Math. 56 (2004), no. 5, 945–962.

    Article  MathSciNet  MATH  Google Scholar 

  22. A. G. Helminck, G. W. Schwarz, Real double coset spaces and their invariants, J. Algebra 322 (2009), 219–236.

    Article  MathSciNet  MATH  Google Scholar 

  23. J. E. Humphreys, Linear Algebraic Groups, Graduate Texts in Mathematics, Vol. 21, Springer Verlag, New York, 1975. Russian transl.: Дж. Хамфри, Линейные алгебраические группы, Наука, М., 1980.

    MATH  Google Scholar 

  24. A. G. Helminck, S. P. Wang, On rationality properties of involutions of reductive groups, Adv. in Math. 99 (1993), 26–96.

    Article  MathSciNet  MATH  Google Scholar 

  25. A. G. Helminck, L. Wu, Classification of involutions of SL(2, k), Comm. Algebra 30(1) (2002), 193–203.

    Article  MathSciNet  MATH  Google Scholar 

  26. A. G. Helminck, L. Wu, C. E. Dometrius, Involutions of SL(n, k), (n > 2), Acta Appl. Math. 90 (2006), 91–119.

    Article  MathSciNet  MATH  Google Scholar 

  27. A. G. Helminck, L. Wu, C. E. Dometrius, Classification of involutions of SO(n, k, β), in preparation.

  28. B. Kostant, S. Rallis, Orbits and representations associated with symmetric spaces, Amer. J. Math. 93 (1971), 753–809.

    Article  MathSciNet  MATH  Google Scholar 

  29. O. Loos, Symmetric Spaces, Benjamin, New York, 1969. Russian transl.: О. Лоос, Симметрические пространства, Наука, М., 1985.

    MATH  Google Scholar 

  30. T. Matsuki, The orbits of affine symmetric spaces under the action of minimal parabolic subgroups, J. Math. Soc. Japan 31 (1979), 331–357.

    Article  MathSciNet  MATH  Google Scholar 

  31. T. Ōshima, T. Matsuki, Orbits on affine symmetric spaces under the action of the isotropy subgroups, J. Math. Soc. Japan 32 (1980), no. 2, 399–414.

    Article  MathSciNet  MATH  Google Scholar 

  32. T. Ōshima, T. Matsuki, A description of discrete series for semisimple symmetric spaces, in: Group Representations and Systems of Differential Equations, Tokyo, 1982, North-Holland, Amsterdam, 1984, pp. 331–390.

    Google Scholar 

  33. T. Ōshima, J. Sekiguchi, Eigenspaces of invariant differential operators in an affine symmetric space, Invent. Math. 57 (1980), 1–81.

    Article  MathSciNet  MATH  Google Scholar 

  34. A. Prestel, Lectures on Formally Real Fields, Lecture Notes in Mathematics, Vol. 1093, Springer-Verlag, Berlin, 1984.

    MATH  Google Scholar 

  35. R. W. Richardson, Orbits, invariants and representations associated to involutions of reductive groups, Invent. Math. 66 (1982), 287–312.

    Article  MathSciNet  MATH  Google Scholar 

  36. J.-P. Serre, Cohomologie Galoisienne, 5th ed., Springer-Verlag, Berlin, 1994.

    MATH  Google Scholar 

  37. T. A. Springer, Linear Algebraic Groups, 2nd ed., Birkhäuser Boston, Boston, MA, 1998.

    Book  MATH  Google Scholar 

  38. E. P. van den Ban, H. Schlichtkrull, The most continuous part of the Plancherel decomposition for a reductive symmetric space, I, Ann. of Math. 145 (1997), 267–364.

    Article  MathSciNet  MATH  Google Scholar 

  39. T. Vust, Opération de groupes reductifs dans un type de cônes presque homogènes, Bull. Soc. Math. France 102 (1974), 317–334.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aloysius G. Helminck.

Additional information

Dedicated to T. A. Springer on his 85th birthday

First author is partially supported by NSF grant DMS-0532140 and NSA grant H98230-06-1-0098.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Helminck, A.G., Schwarz, G.W. On generalized Cartan subspaces. Transformation Groups 16, 783–805 (2011). https://doi.org/10.1007/s00031-011-9151-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00031-011-9151-8

Keywords

Navigation