Skip to main content
Log in

Cohomology of Spaltenstein varieties

  • Published:
Transformation Groups Aims and scope Submit manuscript

Abstract

We give a presentation for the cohomology algebra of the Spaltenstein variety of all partial flags annihilated by a fixed nilpotent matrix, generalizing the description of the cohomology algebra of the Springer fiber found by De Concini, Procesi and Tanisaki.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Borho, R. MacPherson, Répresentations des groupes de Weyl et homologie d’intersection pour les variétés nilpotentes, C. R. Acad. Sci. Paris 292 (1981), 707–710.

    MathSciNet  MATH  Google Scholar 

  2. W. Borho, R. MacPherson, Partial resolutions of nilpotent varieties, Astérisque 101-102 (1983), 23–74.

    MathSciNet  Google Scholar 

  3. T. Braden, A. Licata, C. Phan, N. Proudfoot, B. Webster, Localization algebras and deformations of Koszul algebras, to appear in Selecta Math., DOI:10.1007/s00029-011-0058-y, http://arxiv.org/abs/0905.1335.

  4. A. Braverman, D. Gaitsgory, On Ginzburg’s Lagrangian construction of representations of GL(n), Math. Res. Lett. 6 (1999), 195–201.

    MathSciNet  MATH  Google Scholar 

  5. J. Brundan, Symmetric functions, parabolic category \( \mathcal{O} \) , and the Springer fiber, Duke Math. J. 143 (2008), 41–79.

    Article  MathSciNet  MATH  Google Scholar 

  6. J.-L. Brylinski, Transformations canoniques, dualité projective, théorie de Lefschetz, transformations de Fourier et sommes trigonométriques, Astérisque 140–141 (1986), 3–134.

    MathSciNet  Google Scholar 

  7. C. Chevalley, Invariants of finite groups generated by reflections, Amer. J. Math. 77 (1955), 778–782.

    Article  MathSciNet  MATH  Google Scholar 

  8. C. De Concini, C. Procesi, Symmetric functions, conjugacy classes and the flag variety, Invent. Math. 64 (1981), 203–219.

    Article  MathSciNet  MATH  Google Scholar 

  9. W. Fulton, Young Tableaux. With Applications to Representation Theory and Geometry, London Mathematical Society Student Texts, Vol. 35, Cambridge University Press, Cambridge, 1997.

    MATH  Google Scholar 

  10. A. Garsia, C. Procesi, On certain graded S n -modules and the q-Kostka polynomials, Advances Math. 94 (1992), 82–138.

    Article  MathSciNet  MATH  Google Scholar 

  11. V. Ginzburg, Lagrangian construction of the enveloping algebra \( U\left( {\mathfrak{s}{\mathfrak{l}_n}} \right) \), C. R. Acad. Sci. Paris 312 (1991), 907–912.

    MathSciNet  MATH  Google Scholar 

  12. V. Ginzburg, Geometric methods in the representation theory of Hecke algebras and quantum groups (notes by V. Baranovsky), in: Representation Theories and Algebraic Geometry, Montreal, PQ, 1997, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., Vol. 514, Kluwer, Dordrecht, 1998, pp. 127–183.

    Google Scholar 

  13. M. Goresky, R. MacPherson, On the spectrum of the equivariant cohomology ring, Canad. J. Math. 62 (2010), 262–283.

    Article  MathSciNet  MATH  Google Scholar 

  14. R. Hotta, T. Springer, A specialization theorem for certain Weyl group representations and an application to the Green polynomials of unitary groups, Invent. Math. 41 (1977), 113–127.

    Article  MathSciNet  MATH  Google Scholar 

  15. J. C. Jantzen, Nilpotent orbits in representation theory, in: Lie Theory. Lie Algebras and Representations, Progress in Mathematics, Vol. 228, Birkhauser Boston, Boston, MA, 2004 pp. 1–211.

    Google Scholar 

  16. R. Kiehl, R. Weissauer, Weil Conjectures, Perverse Sheaves and l-adic Fourier Transform, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, Vol. 42, Springer-Verlag, Berlin, 2001.

    Google Scholar 

  17. I. Macdonald, Symmetric Functions and Hall Polynomials, Oxford Mathematical Monographs, 2nd ed., Oxford Mathematical Monographs, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1995.

    MATH  Google Scholar 

  18. N. Spaltenstein, The fixed point set of a unipotent transformation on the flag manifold, Nederl. Akad. Wetensch. Proc. Ser. A 79 (1976), 452–456.

    MathSciNet  MATH  Google Scholar 

  19. T. Springer, Trigonometric sums, Green functions of finite groups and representations of Weyl groups, Invent. Math. 36 (1976), 173–207.

    Article  MathSciNet  MATH  Google Scholar 

  20. T. Springer, A construction of representations of Weyl groups, Invent. Math. 44 (1978), 279–293.

    Article  MathSciNet  MATH  Google Scholar 

  21. C. Stroppel, Parabolic category \( \mathcal{O} \) , perverse sheaves on Grassmannians, Springer fibres and Khovanov homology, Compositio Math. 145 (2009), 954–992.

    Article  MathSciNet  MATH  Google Scholar 

  22. T. Tanisaki, Defining ideals of the closures of the conjugacy classes and representations of the Weyl groups, Tohoku Math. J. 34 (1982), 575–585.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Brundan.

Additional information

To Professor Tonny Springer on the occasion of his eighty-fifth birthday

Supported by NSF grant DMS-0654147. (Jonathan Brundan)

Supported by NSF grant DMS-0602263. (Victor Ostrik)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brundan, J., Ostrik, V. Cohomology of Spaltenstein varieties. Transformation Groups 16, 619–648 (2011). https://doi.org/10.1007/s00031-011-9149-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00031-011-9149-2

Keywords

Navigation