Skip to main content
Log in

Enveloping algebras of Slodowy slices and Goldie rank

  • Published:
Transformation Groups Aims and scope Submit manuscript

Abstract

Let \( U\left( {\mathfrak{g},e} \right) \) be the finite W-algebra associated with a nilpotent element e in a complex simple Lie algebra \( \mathfrak{g} = {\text{Lie}}(G) \) and let I be a primitive ideal of the enveloping algebra \( U\left( \mathfrak{g} \right) \) whose associated variety equals the Zariski closure of the nilpotent orbit (Ad G) e. Then it is known that \( I = {\text{An}}{{\text{n}}_{U\left( \mathfrak{g} \right)}}\left( {{Q_e}{ \otimes_{U\left( {\mathfrak{g},e} \right)}}V} \right) \) for some finite dimensional irreducible \( U\left( {\mathfrak{g},e} \right) \)-module V, where Q e stands for the generalised Gelfand–Graev \( \mathfrak{g} \)-module associated with e. The main goal of this paper is to prove that the Goldie rank of the primitive quotient \( {{{U\left( \mathfrak{g} \right)}} \left/ {I} \right.} \) always divides dim V. For \( \mathfrak{g} = \mathfrak{s}{\mathfrak{l}_n} \), we use a theorem of Joseph on Goldie fields of primitive quotients of \( U\left( \mathfrak{g} \right) \) to establish the equality \( {\text{rk}}\left( {{{{U\left( \mathfrak{g} \right)}} \left/ {I} \right.}} \right) = \dim V \). We show that this equality continues to hold for \( \mathfrak{g} \ncong \mathfrak{s}{\mathfrak{l}_n} \) provided that the Goldie field of \( {{{U\left( \mathfrak{g} \right)}} \left/ {I} \right.} \) is isomorphic to a Weyl skew-field and use this result to disprove Joseph’s version of the Gelfand–Kirillov conjecture formulated in the mid-1970s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. P. Armendariz, C. R. Hajarnavis, A note on semiprime rings algebraic over their centres, Comm. Algebra 17 (1989), 1627–1631.

    Article  MathSciNet  MATH  Google Scholar 

  2. G. M. Bergman, L. W. Small, P.I. degrees and prime ideals, J. Algebra 33 (1975), 435–462.

    Article  MathSciNet  MATH  Google Scholar 

  3. W. Borho, H. Kraft, Über die Gelfand–Kirillov-Dimension, Math. Ann. 220 (1976), 1–24.

    Article  MathSciNet  MATH  Google Scholar 

  4. N. Bourbaki, Algèbre Commutative, Hermann, Paris, 1961 (Chap. I/II), 1962 (Chap. III/IV), 1964 (Chap. V/VI), 1965 (Chap. VII). Russian transl.: Н. Бурбаки, Коммутативная алгебра, Мир, M., 1971.

  5. K. A. Brown, K. R. Goodearl, Homological aspects of Noetherian PI Hopf algebras and irreducible modules of maximal dimension, J. Algebra 198 (1997), 240–265.

    Article  MathSciNet  MATH  Google Scholar 

  6. J. Brundan, Mæglin’s theorem and Goldie rank polynomials in Cartn type A, preprint, 2010, available at arXiv:math.RT/1010.0640v1.

  7. J. Brundan, A. Kleshchev, Shifted Yangians and finite W-algebras, Adv. Math. 200 (2006), 136–195.

    Article  MathSciNet  MATH  Google Scholar 

  8. J. Brundan, A. Kleshchev, Representations of shifted Yangians and finite W-algebras, Mem. Amer. Math. Soc. 196 (2008), no. 918, viii+107 pp.

  9. J. Dixmier, Algèbres Enveloppantes, Gauthier-Villars, Paris, 1974. Russian transl.: Ж. Диксмье, Универсальные обёртывающие алгебры, Мир, M, 1978.

    MATH  Google Scholar 

  10. D. Eisenbud, Commutative Algebra with a View Towards Algebraic Geometry, Graduate Texts in Mathematics, Vol. 150, Springer, New York, 1994.

    Google Scholar 

  11. W. L. Gan, V. Ginzburg, Quantization of Slodowy slices, Int. Math. Res. Not. 5 (2002), 243–255.

    Article  MathSciNet  Google Scholar 

  12. I. M. Gelfand, A. A. Kirillov, Sur les corps liés aux algèbres enveloppantes des algèbres de Lie, Inst. Hautes Études Sci. Publ. Math. 31 (1966), 5–19.

    Article  MathSciNet  Google Scholar 

  13. V. Ginzburg, Harish-Chandra bimodules for quantized Slodowy slices, Represent. Theory 13 (2009), 236–371.

    Article  MathSciNet  MATH  Google Scholar 

  14. A. Goldie, The structure of Noetherian rings, in: Lectures on Rings and Modules, Tulane Univ. Ring and Operator Theory Year 1970–1971, I, Lecture Notes in Mathematics, 246 Springer-Verlag, Berlin, 1972, pp. 213–321.

    Chapter  Google Scholar 

  15. J. C. Jantzen, Einhülende Algebren Halbeinfacher Lie-Algebren, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), Vol. 3, Springer, New York, 1983.

    Google Scholar 

  16. A. Joseph, On the Gelfand–Kirillov conjecture for induced ideals in the semisimple case, Bull. Soc. Math. France 107 (1979), 139–159.

    MathSciNet  MATH  Google Scholar 

  17. A. Joseph, Kostant’s problem, Goldie rank and the Gelfand–Kirillov conjecture, Invent. Math. 56 (1980), 191–213.

    Article  MathSciNet  MATH  Google Scholar 

  18. B. Kostant, On Whittaker vectors and representation theory, Invent. Math. 48 (1978), 101–184.

    Article  MathSciNet  MATH  Google Scholar 

  19. I. V. Losev, Quantized symplectic actions and W-algebras, J. Amer. Math. Soc. 23 (2010), 35–59.

    Article  MathSciNet  MATH  Google Scholar 

  20. I. V. Losev, Finite dimensional representations of W-algebras, Duke Math. J., in press, preprint of 2008 is available at arXiv:math.RT/0807.1023v6.

  21. I. V. Losev, On the structure of the category \( \mathcal{O} \) for W-algebras,, in: Geometric Methods in Representation Theory, II, Séminaires & Congrès, Num. 25, Sociéte Mathématique de France, 2010, pp. 351–368.

  22. J. C. McConnell, J. C. Robson, Noncommutative Noetherian Rings, Pure and Appl. Maths., Whiley, Chichester, 1987.

    MATH  Google Scholar 

  23. W. M. McGovern Rings of regular functions on nilpotent orbits. II. Model algebras and orbits, Comm. Algebra 22 (1994), 765–772.

    Article  MathSciNet  MATH  Google Scholar 

  24. W.M. McGovern, Completely prime maximal ideals and quantization, Mem. Amer. Math. Soc. 108 (1994), no. 519, viii+67 pp.

  25. C. Mæglin, Idéaux primitifs complètement premiers de l’algèbre enveloppante de \( \mathfrak{g}\mathfrak{l}\left( {n,\mathbb{C}} \right) \), J. Algebra 106 (1987), 287–366.

    Article  MathSciNet  Google Scholar 

  26. A. Premet, Irreducible representations of Lie algebras of reductive groups and the Kac–Weisfeiler conjecture, Invent. Math. 121 (1995), 79–117.

    Article  MathSciNet  MATH  Google Scholar 

  27. A. Premet, Special transverse slices and their enveloping algebras, Adv. Math. 170 (2002), 1–55.

    Article  MathSciNet  MATH  Google Scholar 

  28. A. Premet, Enveloping algebras of Slodowy slices and the Joseph ideal, J. Eur. Math. Soc. 9 (2007), 487–543.

    Article  MathSciNet  MATH  Google Scholar 

  29. A. Premet, Primitive ideals, non-restricted representations and finite W-algebras, Mosc. Math. J. 7 (2007), 743–762.

    MathSciNet  MATH  Google Scholar 

  30. A. Premet, Modular Lie algebras and the Gelfand–Kirillov conjecture, Invent. Math. 181 (2010), 395–420.

    Article  MathSciNet  MATH  Google Scholar 

  31. A. Premet, Commutative quotients of finite W-algebras, Adv. Math. 225 (2010), 269–306.

    Article  MathSciNet  MATH  Google Scholar 

  32. L. H. Rowen, Maximal quotients of semiprime PI-algebras, Trans. Amer. Math. Soc. 196 (1974), 127–135.

    Article  MathSciNet  MATH  Google Scholar 

  33. W. Schelter, Non-commutative affine P.I. rings are catenary, J. Algebra 51 (1978), 12–18.

    Article  MathSciNet  MATH  Google Scholar 

  34. S. Skryabin, A category equivalence, Appendix to [27].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Premet.

Additional information

Dedicated to Professor T. A. Springer on the occasion of his 85th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Premet, A. Enveloping algebras of Slodowy slices and Goldie rank. Transformation Groups 16, 857–888 (2011). https://doi.org/10.1007/s00031-011-9141-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00031-011-9141-x

Keywords

Navigation