Skip to main content
Log in

Roots of the affine Cremona group

  • Published:
Transformation Groups Aims and scope Submit manuscript

Abstract

Let k [n] = k[x 1,…, x n ] be the polynomial algebra in n variables and let \( {\mathbb{A}^n} = {\text{Spec}}\;{{\bold{k}}^{\left[ n \right]}} \). In this note we show that the root vectors of \( {\text{Au}}{{\text{t}}^*}\left( {{\mathbb{A}^n}} \right) \), the subgroup of volume preserving automorphisms in the affine Cremona group \( {\text{Aut}}\left( {{\mathbb{A}^n}} \right) \), with respect to the diagonal torus are exactly the locally nilpotent derivations x α(∂/∂x i ), where x α is any monomial not depending on x i . This answers a question posed by Popov.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Altmann, J. Hausen, Polyhedral divisors and algebraic torus actions, Math. Ann. 334 (2006), no. 3, 557–607.

    Article  MathSciNet  MATH  Google Scholar 

  2. A. Białynicki-Birula, Remarks on the action of an algebraic torus on k n, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 14 (1966), 177–181.

    Google Scholar 

  3. A. Białynicki-Birula, Remarks on the action of an algebraic torus on k n, II, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 15 (1967), 123–125.

    Google Scholar 

  4. G. Freudenburg, Algebraic Theory of Locally Nilpotent Derivations, Encyclopaedia of Mathematical Sciences, Vol. 136, Series Invariant Theory and Algebraic Transformation Groups, Vol. VII, Springer, Berlin, 2006.

    MATH  Google Scholar 

  5. T. Kambayashi, Automorphism group of a polynomial ring and algebraic group action on an affine space, J. Algebra 60 (1979), no. 2, 439–451.

    Article  MathSciNet  MATH  Google Scholar 

  6. A. Liendo, Affine \( \mathbb{T} \) -varieties of complexity one and locally nilpotent derivations Transform. Groups 15 (2010), no. 2, 389–425.

    Article  MathSciNet  MATH  Google Scholar 

  7. V. L. Popov, Problems for problem session, arXiv:math.AG/0504517v1 25 Apr 2005.

  8. V. L. Popov, Roots of the affine Cremona group, in: Affine Algebraic Geometry, Seville, Spain, June 18–21, 2003, Contemporary Mathematics, Vol. 369, American Mathematical Society, Providence, RI, 2005, pp. 12–13.

    Google Scholar 

  9. I. R. Shafarevich, On some infinite-dimensional groups, Rend. Mat. e Appl. (5) 25 (1966), nos. 1–2, 208–212.

    MathSciNet  Google Scholar 

  10. T. A. Springer, Linear Algebraic Groups, 2nd ed., Progress in Mathematics, Vol. 9, Birkhäuser Boston, Boston, MA, 1998.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alvaro Liendo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liendo, A. Roots of the affine Cremona group. Transformation Groups 16, 1137–1142 (2011). https://doi.org/10.1007/s00031-011-9140-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00031-011-9140-y

Keywords

Navigation