Skip to main content
Log in

Smooth Schubert varieties in G/B and B-submodules of \( {{\mathfrak{g}} \left/ {\mathfrak{b}} \right.} \)

  • Published:
Transformation Groups Aims and scope Submit manuscript

Abstract

Let G be a semisimple linear algebraic group over \( \mathbb{C} \) without G 2-factors, B a Borel subgroup of G and TB a maximal torus. The flag variety G/B is a projective G-homogeneous variety whose tangent space at the identity coset is isomorphic, as a B-module, to \( {{\mathfrak{g}} \left/ {\mathfrak{b}} \right.} \), where \( \mathfrak{g} \) = Lie(G) and \( \mathfrak{b} \) = Lie(B). Recall that if w is an element of the Weyl group W of the pair (G, T), the Schubert variety X(w) in G/B is by definition the closure of the Bruhat cell BwB. In this paper we prove that X(w) is nonsingular if and only if: (1) its Poincaré polynomial is palindromic; and (2) the tangent space TE(X(w)) to the set T-stable curves in X(w) through the identity is a B-submodule of \( {{\mathfrak{g}} \left/ {\mathfrak{b}} \right.} \). The second condition can be interpreted as saying that the roots of (G, T) in the convex hull of a certain set of roots canonically associated to w arise as tangent weights to T-stable curves in X(w) at the identity. A corollary is that X(w) is smooth if and only if X(w -1) is smooth. Condition (2) also gives a pattern avoidance criterion for TE(X(w)) to be B-stable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Billey, Pattern avoidance and rational smoothness of Schubert varieties, Adv. Math. 139 (1998), no. 1, 141–156.

    Article  MathSciNet  MATH  Google Scholar 

  2. S. Billey, T. Braden, Lower bounds for Kazhdan–Lusztig polynomials from patterns, Transform. Groups 8 (2003), no. 4, 321–332.

    Article  MathSciNet  MATH  Google Scholar 

  3. S. Billey, V. Lakshmibai, Singular Loci of Schubert Varieties, Progress in Mathematics, Vol. 182, Birkhäuser Boston, Boston, MA, 2000.

    MATH  Google Scholar 

  4. S. Billey, S. A. Mitchell, Smooth and palindromic Schubert varieties in affine Grassmannians, J. Algebraic Combin. 31 (2010), no. 2, 169–216.

    Article  MathSciNet  MATH  Google Scholar 

  5. S. Billey, A. Postnikov, Smoothness of Schubert varieties via patterns in root subsystems, Adv. Appl. Math. 34 (2005), no. 3, 447–466.

    Article  MathSciNet  MATH  Google Scholar 

  6. J. B. Carrell, The Bruhat graph of a Coxeter group, a conjecture of Deodhar, and rational smoothness of Schubert varieties, in: Algebraic Groups and their Generalizations: Classical Methods (University Park, PA, 1991), Proc. Sympos. Pure Math., Vol. 56, Part 1, Amer. Math. Soc., Providence, RI, 1994, pp. 53–61.

  7. J. B. Carrell, The span of the tangent cone of a Schubert variety, in: Algebraic Groups and Lie Groups, Austral. Math. Soc. Lect. Ser., Vol. 9, Cambridge University Press, Cambridge, 1997, pp. 51–59.

  8. J. B. Carrell, J. Kuttler, Singular points of T-varieties in G/P and the Peterson map, Invent. Math. 151 (2003), 353–379.

    Article  MathSciNet  MATH  Google Scholar 

  9. C. Chevalley, Sur les decompositions cellulaires des espaces G/B, in: Algebraic Groups and their Generalizations: Classical Methods (University Park, PA, 1991), Proc. Sympos. Pure Math., Vol. 56, Part 1, Amer. Math. Soc., Providence, RI, 1994, pp. 1–25.

  10. V. V. Deodhar, Local Poincaré duality and nonsingularity of Schubert varieties, Comm. Algebra 13 (1985), no. 6, 1379–1388.

    Article  MathSciNet  MATH  Google Scholar 

  11. D. Kazhdan, G. Lusztig, Schubert varieties and Poincaré duality, in: Geometry of the Laplace Operator (Proc. Sympos. Pure Math., Univ. Hawaii, Honolulu, Hawaii, 1979), Proc. Sympos. Pure Math., Vol. 36, Amer. Math. Soc., Providence, RI, 1980, pp. 185–203.

  12. S. Kumar, Nil Hecke ring and singularity of Schubert varieties, Invent. Math. 123 (1996), 471–506.

    MathSciNet  MATH  Google Scholar 

  13. V. Lakshmibai, B. Sandhya, Criterion for smoothness of Schubert varieties in SL(n)/B, Proc. Indian Acad. Sci. Math. Sci. 100 (1990), 45–52.

    Article  MathSciNet  MATH  Google Scholar 

  14. V. Lakshmibai, C. S. Seshadri: Singular locus of a Schubert variety, Bull. Amer. Math. Soc. (N.S.) 11 (1984), no. 2, 363–366.

    Article  MathSciNet  MATH  Google Scholar 

  15. P. Polo, On Zariski tangent spaces of Schubert varieties, and a proof of a conjecture of Deodhar, Indag. Math. (N.S.) 5 (1994), no. 4, 483–493.

    Article  MathSciNet  MATH  Google Scholar 

  16. K. M. Ryan, On Schubert varieties in the flag manifold of Sl(n, C), Math. Ann. 276 (1987) 205–224.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James B. Carrell.

Additional information

Dedicated with warmest regards to Tonny Springer

Partially supported by the Natural Sciences and Engineering Research Council of Canada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carrell, J.B. Smooth Schubert varieties in G/B and B-submodules of \( {{\mathfrak{g}} \left/ {\mathfrak{b}} \right.} \) . Transformation Groups 16, 673–680 (2011). https://doi.org/10.1007/s00031-011-9128-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00031-011-9128-7

Keywords

Navigation