Skip to main content
Log in

Riemann–Hilbert for tame complex parahoric connections

  • Published:
Transformation Groups Aims and scope Submit manuscript

Abstract

A local Riemann–Hilbert correspondence for tame meromorphic connections on a curve compatible with a parahoric level structure will be established. Special cases include logarithmic connections on G-bundles and on parabolic G-bundles. The corresponding Betti data involves pairs (M, P) consisting of the local monodromy MG and a (weighted) parabolic subgroup PG such that MP, as in the multiplicative Brieskorn–Grothendieck–Springer resolution (extended to the parabolic case). The natural quasi-Hamiltonian structures that arise on such spaces of enriched monodromy data will also be constructed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Alekseev, A. Malkin, E. Meinrenken, Lie group valued moment maps, J. Differential Geom. 48 (1998), no. 3, 445–495, math.DG/9707021.

    MATH  MathSciNet  Google Scholar 

  2. D. G. Babbitt, V. S. Varadarajan, Formal reduction theory of meromorphic differential equations: a group theoretic view, Pacific J. Math. 109 (1983), no. 1, 1–80.

    MATH  MathSciNet  Google Scholar 

  3. V. Balaji, I. Biswas, D. S. Nagaraj, Ramified G-bundles as parabolic bundles, J. Ramanujan Math. Soc. 18 (2003), no. 2, 123–138.

    MATH  MathSciNet  Google Scholar 

  4. O. Biquard, Sur les équations de Nahm et la structure de Poisson des algèbres de Lie semi-simples complexes, Math. Ann. 304 (1996), no. 2, 253–276.

    Article  MATH  MathSciNet  Google Scholar 

  5. O. Biquard, P. P. Boalch, Wild non-abelian Hodge theory on curves, Compositio Math. 140 (2004), no. 1, 179–204.

    Article  MATH  MathSciNet  Google Scholar 

  6. P. P. Boalch, Symplectic manifolds and isomonodromic deformations, Adv. Math. 163 (2001), 137–205.

    Article  MATH  MathSciNet  Google Scholar 

  7. P. P. Boalch, G-bundles, isomonodromy and quantum Weyl groups, Int. Math. Res. Not. IMRN (2002), no. 22, 1129–1166.

  8. P. P. Boalch, Quasi-Hamiltonian geometry of meromorphic connections, Duke Math. J. 139 (2007), no. 2, 369–405, math.DG/0203161.

    Article  MATH  MathSciNet  Google Scholar 

  9. P. P. Boalch, Through the analytic halo: Fission via irregular singularities, Ann. Inst. Fourier (Grenoble) 59 (2009), no. 7, 2669–2684.

    MATH  MathSciNet  Google Scholar 

  10. A. A. Bolibruch, On isomonodromic deformations of Fuchsian systems, J. Dyn. Control Syst. 3 (1997), no. 4, 589–604.

    MATH  MathSciNet  Google Scholar 

  11. A. Borel, Linear Algebraic Groups, 2nd ed., Springer-Verlag, New York, 1991.

    MATH  Google Scholar 

  12. F. Bruhat, J. Tits, Groupes réductifs sur un corps local, Inst. Hautes Études Sci. Publ. Math. (1972), no. 41, 5–251.

  13. P. Deligne, Équations Différentielles à Points Singuliers Réguliers, Lecture Notes in Mathematics, Vol. 163, Springer-Verlag, Berlin, 1970.

    Google Scholar 

  14. S. Evens, J.-H. Lu, Poisson geometry of the Grothendieck resolution of a complex semisimple group, Mosc. Math. J. 7 (2007), no. 4, 613–642.

    MATH  MathSciNet  Google Scholar 

  15. S. Gukov, E. Witten, Gauge theory, ramification, and the geometric Langlands program (2006), arXiv.org:hep-th/0612073.

  16. S. Gukov, E. Witten, Rigid surface operators (2008), arXiv.org:hep-th/0804.1561.

  17. N. M. Katz, On the calculation of some differential Galois groups, Invent. Math. 87 (1987), no. 1, 13–61.

    Article  MATH  MathSciNet  Google Scholar 

  18. D. Kazhdan, G. Lusztig, Fixed point varieties on affine flag manifolds, Israel J. Math. 62 (1988), no. 2, 129–168.

    Article  MATH  MathSciNet  Google Scholar 

  19. A. H. M. Levelt, Hypergeometric functions, II, Indag. Math. 23 (1961), 373–385.

    MathSciNet  Google Scholar 

  20. B. Malgrange, Sur les deformations isomonodromiques, I, Singularites regulieres, in: Séminaire E.N.S. Mathématique et Physique (Boston) (L. Boutet de Monvel, A. Douady, J.-L. Verdier, eds.), Progress in Mathematics, Vol. 37, Birkhäuser, Boston, 1983, pp. 401–426.

  21. D. Mumford, J. Fogarty, F. Kirwan, Geometric Invariant Theory, 3rd ed., Springer-Verlag, Berlin, 1994.

    Google Scholar 

  22. G. Pappas, M. Rapoport, Twisted loop groups and their affine flag varieties, with an appendix by T. Haines and M. Rapoport, Adv. Math. 219 (2008), no. 1, 118–198.

    Article  MATH  MathSciNet  Google Scholar 

  23. C. Sabbah, Harmonic metrics and connections with irregular singularities, Ann. Inst. Fourier (Grenoble) 49 (1999), no. 4, 1265–1291.

    MATH  MathSciNet  Google Scholar 

  24. C. S. Seshadri, Slides for talk entitled “Some Remarks on Parabolic Structures” at Ramanan’s conference (Miraores de la Sierra, Spain, 2008), www.mat.csic.es/webpages/moduli2008/ramanan/slides/seshadri.pdf.

  25. C. T. Simpson, Harmonic bundles on noncompact curves, J. Amer. Math. Soc. 3 (1990), 713–770.

    Article  MATH  MathSciNet  Google Scholar 

  26. C. Teleman, C. Woodward, Parabolic bundles, products of conjugacy classes, and Gromov–Witten invariants, Ann. Inst. Fourier (Grenoble) 53 (2003), no. 3, 713–748.

    MATH  MathSciNet  Google Scholar 

  27. D. Yamakawa, Geometry of multiplicative preprojective algebra, Int. Math. Res. Pap. IMRP (2008), Art. ID rpn008, 77 pp.

  28. Z. Yun, Global Springer theory, to appear (cf. math/0904.3371).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. P. Boalch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boalch, P.P. Riemann–Hilbert for tame complex parahoric connections. Transformation Groups 16, 27–50 (2011). https://doi.org/10.1007/s00031-011-9121-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00031-011-9121-1

Keywords

Navigation