Skip to main content
Log in

Spherical orbit closures in simple projective spaces and their normalizations

  • Published:
Transformation Groups Aims and scope Submit manuscript

Abstract

Let G be a simply connected semisimple algebraic group over an algebraically closed field k of characteristic 0 and let V be a rational simple G-module. If G/HP(V) is a spherical orbit and if \( X = \overline {G/H} \) is its closure, then we describe the orbits of X and those of its normalization \( \tilde{X} \) . If, moreover, the wonderful completion of G/H is strict, then we give necessary and sufficient combinatorial conditions so that the normalization morphism \( \tilde{X} \to X \) is a homeomorphism. Such conditions are trivially fulfilled if G is simply laced or if H is a symmetric subgroup.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Akhiezer, Equivariant completions of homogeneous algebraic varieties by homogeneous divisors, Ann. Global Anal. Geom. 1 (1983), no. 1, 49–78.

    Article  MATH  MathSciNet  Google Scholar 

  2. P. Bravi, Wonderful varieties of type E, Represent. Theory 11 (2007), 174–191.

    Article  MATH  MathSciNet  Google Scholar 

  3. P. Bravi, Primitive spherical systems, preprint (2009), arXiv:math.AG/0909.3765v2, 70 pp.

  4. P. Bravi and S. Cupit-Foutou, Classification of strict wonderful varieties, Ann. Inst. Fourier (Grenoble) 60 (2010), no. 2, 641–681.

    MATH  MathSciNet  Google Scholar 

  5. P. Bravi, J. Gandini, A. Maffei, A. Ruzzi, Normality and nonnormality of group compactifications in simple projective spaces, preprint (2010), arXiv:math.AG/1005.2478v2, 16 pp. (to appear in Ann. Inst. Fourier (Grenoble)).

  6. P. Bravi, D. Luna, An introduction to wonderful varieties with many examples of type F4, preprint (2008), arXiv:math.AG/0812.2340v2, 65 pp. (to appear in J. Algebra).

  7. P. Bravi, G. Pezzini, Wonderful varieties of type D, Represent. Theory 9 (2005), 578–637.

    Article  MATH  MathSciNet  Google Scholar 

  8. P. Bravi, G. Pezzini, Wonderful varieties of type B and C, preprint (2009), arXiv:mathAG/0909.3771v1, 24 pp.

  9. M. Brion, Groupe de Picard et nombres caractéristiques des variétés sphériques, Duke Math. J. 58 (1989), no. 2, 397–424.

    Article  MATH  MathSciNet  Google Scholar 

  10. M. Brion, Variétés sphériques, Notes de la session de la S.M.F. Opérations hamiltoniennes et opérations de groupes algébriques, Grenoble (1997), http://www-fourier.ujf-grenoble.fr/~mbrion/spheriques.pdf, 59 pp.

  11. M. Brion, The total coordinate ring of a wonderful variety, J. Algebra 313 (2007), no. 1, 61–99.

    Article  MATH  MathSciNet  Google Scholar 

  12. M. Brion, D. Luna, Th. Vust, Espaces homogenès sphériques, Invent. Math. 84 (1986), no. 3, 617–632.

    Article  MATH  MathSciNet  Google Scholar 

  13. M. Brion, F. Pauer, Valuations des espaces homogenès sphériques, Comment. Math. Helv. 62 (1987), no. 2, 265–285.

    Article  MATH  MathSciNet  Google Scholar 

  14. S. Cupit-Foutou, Wonderful varieties: A geometrical realization, preprint (2009), arXiv:math.AG/0907.2852v3, 37 pp.

  15. C. De Concini, C. Procesi, Complete symmetric varieties, in: Invariant Theory (Montecatini, 1982), Lecture Notes in Mathematics, Vol. 996, Springer-Verlag, Berlin, 1983, pp. 1–44.

  16. A. Foschi, Variétés magnifiques et polytopes moment, PhD thesis, Institut Fourier, Université J. Fourier, Grenoble, 1998.

  17. F. Knop, The Luna–Vust Theory of spherical embeddings, in: Proceedings of the Hyderabad Conference on Algebraic Groups (Hyderabad, 1989), Manoj Prakashan, Madras, 1991, 225–249.

  18. F. Knop, On the set of orbits for a Borel subgroup, Comment. Math. Helv. 70 (1995), no. 2, 285–309.

    Article  MATH  MathSciNet  Google Scholar 

  19. F. Knop, Automorphisms, root systems, and compactifications of homogeneous varieties, J. Amer. Math. Soc. 9 (1996), no. 1, 153–174.

    Article  MATH  MathSciNet  Google Scholar 

  20. I. Losev, Uniqueness property for spherical homogeneous spaces, Duke Math. J. 147 (2009), no. 2, 315–343.

    Article  MATH  MathSciNet  Google Scholar 

  21. D. Luna, Toute variété magnifique est sphérique, Transform. Groups 1 (1996), no. 3, 249–258.

    Article  MATH  MathSciNet  Google Scholar 

  22. D. Luna, Variétés sphériques de type A, Publ. Math. Inst. Hautes Études Sci. 94 (2001), 161–226.

    MATH  MathSciNet  Google Scholar 

  23. D. Luna, La variété magnifique modèle, J. Algebra 313 (2007), no. 1, 292–319.

    Article  MATH  MathSciNet  Google Scholar 

  24. A. Maffei, Orbits in degenerate compactifications of symmetric varieties, Transform. Groups 14 (2009), no. 1, 183–194.

    Article  MATH  MathSciNet  Google Scholar 

  25. G. Pezzini, Wonderful varieties of type C, PhD thesis, Università di Roma “La Sapienza”, Roma, 2003.

  26. G. Pezzini, Simple immersions of wonderful varieties, Math. Z. 255 (2007), no. 4, 793–812.

    Article  MATH  MathSciNet  Google Scholar 

  27. Д. А. Тимашев, Эквиварианmные компакmификации редукmивных групп, Мат. сб. 194 (2003), no. 4, 119–146. Engl. transl.: D. A. Timashev, Equivariant compactifications of reductive groups, Sb. Math. 194 (2003), no. 4, 589–616.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Gandini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gandini, J. Spherical orbit closures in simple projective spaces and their normalizations. Transformation Groups 16, 109–136 (2011). https://doi.org/10.1007/s00031-011-9120-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00031-011-9120-2

Keywords

Navigation