Skip to main content
Log in

Lie completion of pseudo-groups

  • Published:
Transformation Groups Aims and scope Submit manuscript

Abstract

By far the most important class of pseudo-groups, both for theory and in essentially all applications, are the Lie pseudo-groups. In this paper we propose a definition of the Lie completion of a regular pseudo-group, and establish some of its basic properties. In particular, a pseudo-group and its Lie completion have exactly the same differential invariants and invariant differential forms. Thus, for practical purposes, one can exclusively work within the category of Lie pseudo-groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. L. Bryant, S.-S. Chern, R. B. Gardner, H. L. Goldschmidt, P. A. Griffiths, Exterior Differential Systems, Math. Sci. Res. Inst. Publ., Vol. 18, Springer-Verlag, New York, 1991.

  2. É. Cartan, Sur la structure des groupes infinis de transformations, in: Oeuvres Complètes, Part II, Vol. 2, Gauthier-Villars, Paris, 1953, pp. 571–714.

  3. C. Ehresmann, Introduction à la théorie des structures infinitésimales et des pseudo-groupes de Lie, in: Géometrie Différentielle, Colloq. Inter. du Centre Nat. de la Rech. Sci., Strasbourg, 1953, pp. 97–110.

  4. D. B. Fuchs, A. M. Gabrielov, I. M. Gel'fand, The Gauss-Bonnet theorem and Atiyah-Patodi-Singer functionals for the characteristic classes of foliations, Topology 15 (1976), 165–188.

    Article  MATH  MathSciNet  Google Scholar 

  5. V. Itskov, Orbit Reduction of Exterior Differential Systems, PhD Thesis, University of Minnesota, 2002.

  6. H. H. Johnson, Classical differential invariants and applications to partial differential equations, Math. Ann. 148 (1962), 308–329.

    Article  MATH  MathSciNet  Google Scholar 

  7. M. Kuranishi, On the local theory of continuous infinite pseudo groups, I, II, Nagoya Math. J. 15 (1959), 225–260, 19 (1961), 55–91.

    MathSciNet  Google Scholar 

  8. K. Mackenzie, Lie Groupoids and Lie Algebroids in Differential Geometry, London Mathematical Society Lecture Notes, Vol. 124, Cambridge University Press, Cambridge, 1987.

    Book  MATH  Google Scholar 

  9. D. McDuff, D. Salamon, Introduction to Symplectic Topology, Oxford University Press, Oxford, 1995.

    MATH  Google Scholar 

  10. P. J. Olver, Applications of Lie Groups to Differential Equations, 2nd ed., Graduate Texts in Mathematics, Vol. 107, Springer-Verlag, New York, 1993. Russian transl. of 1st ed.: П. Олвер, Прuложсенuя груnn Лu к дuфференцuальным урвненцям, Мир, М., 1989.

  11. P. J. Olver, Equivalence, Invariants, and Symmetry, Cambridge University Press, Cambridge, 1995.

    Book  MATH  Google Scholar 

  12. P. J. Olver, J. Pohjanpelto, Maurer-Cartan equations and structure of Lie pseudo-groups, Selecta Math. 11 (2005), 99–126.

    Article  MATH  MathSciNet  Google Scholar 

  13. P. J. Olver, J. Pohjanpelto, Moving frames for Lie pseudo-groups, Canad. J. Math. 60 (2008), 1336–1386.

    Article  MATH  MathSciNet  Google Scholar 

  14. P. J. Olver, J. Pohjanpelto, Differential invariant algebras of Lie pseudo-groups, Adv. Math. 222 (2009), 1746–1792.

    Article  MATH  MathSciNet  Google Scholar 

  15. J. F. Pommaret, Systems of Partial Differential Equations and Lie Pseudogroups, Gordon and Breach, New York, 1978. Russian transl.: Ж. Поммаре, Сuсmемы уравненuй с часmнымu nроuзвднымu u nсевдогруnnы Лu, Мир, М., 1983.

    MATH  Google Scholar 

  16. W. M. Seiler, Involution: The Formal Theory of Differential Equations and its Applications in Computer Algebra, Algorithms and Computations in Mathematics, Vol. 24, Springer, New York, 2010.

  17. I. Singer, I., S. Sternberg, The infinite groups of Lie and Cartan, I, The transitive groups, J. Anal. Math. 15 (1965), 1–115.

    Article  MATH  MathSciNet  Google Scholar 

  18. O. Stormark, Lie's Structural Approach to PDE Systems, Encyclopedia of Mathematics and its Applications, Vol. 80, Cambridge University Press, Cambridge, 2000.

    MATH  Google Scholar 

  19. E. Vessiot, Sur la théorie des groupes continues, Ann. Sci. École Norm. Sup. 20 (1903), 411–451.

    MathSciNet  Google Scholar 

  20. A. Weil, Oeuvres Scientifiques, Vol. 1, Springer-Verlag, New York, 1979.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Itskov.

Additional information

Supported in part by NSF grant 08-07317.

Supported by a University of Minnesota Graduate School Doctoral Dissertation Fellowship and NSF grant 05-05293.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Itskov, V., Olver, P.J. & Valiquette, F. Lie completion of pseudo-groups. Transformation Groups 16, 161–173 (2011). https://doi.org/10.1007/s00031-010-9118-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00031-010-9118-1

Keywords

Navigation